WELSH JOINT EDUCATION COMMITTEE

CYD-BWYLLGOR ADDYSG CYMRU

General Certificate of Education

Tystysgrif Addysg Gyffredinol

Advanced Level/Advanced Subsidiary

Safon Uwch/Uwch Gyfrannol

MATHEMATICS C1

Pure Mathematics

Specimen Paper 2005/2006

 $(1\frac{1}{2} \text{ hours})$

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Calculators are **not** allowed for this paper.

INFORMATION FOR CANDIDATES

A formula booklet is available and may be used.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1.	The points A, B, C have coordinates $(4, -2)$, $(-12, 10)$, $(10, 6)$, respectively.		
	(a)	Find the gradients of the lines	
		AB, BC, CA.	[3]
	<i>(b)</i>	Show that one of the angles of triangle <i>ABC</i> is a right-angle.	[2]
	(c)	Show that the equation of the line AB is $3x + 4y - 4 = 0$.	[2]
	<i>(d)</i>	The mid-point of BC is D . Find the length of AD .	[4]
2.	Simp	olify	
		$\frac{2\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$	
	expre	essing your answer in the form $a + \sqrt{b}$, where a and b are integers.	[4]
3.	Use a	an algebraic method to solve the simultaneous equations	
		$y = x^2 - 3x + 2,$ y = 3x - 7.	
	Inter	pret your answer geometrically.	[6]
4.	Give	n that the equation	
		$2kx^2 + 4x + k - 1 = 0$	
	has t	wo distinct real roots, show that	
		$k^2 - k - 2 < 0.$	
	Find	the range of values of k satisfying this inequality.	[6]
5.	(a)	Express $2x^2 - 12x + 25$ in the form $a(x - b)^2 + c$, where a, b, c are considered	stants to

Find the least value of $2x^2 - 12x + 25$ and the corresponding value of x.

Sketch the curve $y = 2x^2 - 12x + 25$.

[2]

[2]

(b)

(c)

6. (a) Given that x + 2 is a factor of

$$kx^3 + 8x^2 + 3x - 2$$
,

show that
$$k = 3$$
. [3]

(b) Solve the equation

$$3x^3 + 8x^2 + 3x - 2 = 0.$$
 [4]

- (c) Find the remainder when $3x^3 + 8x^2 + 3x 2$ is divided by x 3. [2]
- 7. (a) Using the binomial theorem, expand $(2x + 3)^4$, simplifying each term of the expansion. [4]
 - (b) In the binomial expansion of $(1 + 3x)^n$ the coefficient of x^2 is 54.

Given that
$$n > 0$$
, find the value of n . [4]

- **8.** (a) Given that $y = x^2 4x + 2$, find $\frac{dy}{dx}$ from first principles. [5]
 - (b) Differentiate $\frac{3}{x^4} + 4\sqrt{x}$ with respect to x. [4]
- **9.** The curve *C* has equation

$$y = x^4 + x + 1$$
.

Find the equation of the tangent to C at the point (1, 3). [4]

10. The curve C has equation

$$y = x^3 - 3x^2 - 9x + 3.$$

- (a) Find the coordinates and nature of the stationary points of C. [8]
- (b) Sketch C. [3]