Contents

	Page
Mark Schemes	
C1	3
C2	9
C3	15
C4	21
FP1	27
FP2	31
FP3	35
M1	39
M2	45
M3	51
S1	57
S2	61
S3	65

WELSH JOINT EDUCATION COMMITTEE

CYD-BWYLLGOR ADDYSG CYMRU

General Certificate of Education

Tystysgrif Addysg Gyffredinol

Advanced Level/Advanced Subsidiary

Safon Uwch/Uwch Gyfrannol

MATHEMATICS S2

Statistics

Specimen Mark Scheme

2005/2006

1. (a) (i)
$$z = \frac{200 - 195}{5} = 1$$
 M1A1
 $\Rightarrow P(\text{overflow}) = 0.1587$ A1

(ii)
$$\mu = 200 - 2.326 \times 5 = 188.4$$
 M1A1A1

(b)
$$T \text{ is } N(980,125)$$
 M1A1

$$z = \frac{1000 - 980}{\sqrt{125}} = 1.79$$
 m1A1
Prob = 0.0367 A1

2. (a) Distribution of T is Poi(2.5). B1
Prob =
$$e^{-2.5} \cdot \frac{2.5^2}{2} = 0.257$$
 M1A1

(b) T is now Poi(125)
$$\approx$$
 N(125,125) M1A1
$$z = \frac{99.5 - 125}{\sqrt{125}} = -2.28$$
 M1A1A1
Prob = 0.0113 A1

3. (a)
$$\bar{x} = 73.5$$
 M1A1
95% confidence limits are
$$73.5 \pm 1.96 \sqrt{\frac{16}{10}}$$
 M1A1A1
giving [71.0, 76.0]. A1

(b) A 95% confidence interval is an interval determined by a method which would ensure that the parameter lies within the interval 95% of the time.
 B2 (Allow B1 if not completely convinced)

4. (a)
$$P(\pi R^2 > 36\pi) = P(R > 6)$$
 M1
 $= \frac{(10-6)}{(10-4)}$ A1
 $= \frac{2}{3}$ A1

(b) (i) The density of
$$R$$
 is $f(r) = 1/6$ (si) B1
$$E(A) = \pi \int_{4}^{10} r^{2} \cdot \frac{1}{6} dr$$

$$= \frac{\pi}{18} [r^{3}]_{4}^{10}$$

$$= 52\pi$$
A1

(ii)
$$E(A^{2}) = \pi^{2} \int_{4}^{10} r^{4} \cdot \frac{1}{6} dr$$
 M1A1

$$= \frac{\pi^{2}}{30} [r^{5}]_{4}^{10}$$
 A1

$$= 3299.2 \pi^{2}$$
 A1

$$Var(A) = 3299.2 \pi^{2} - 52^{2} \pi^{2}$$

$$= 595.2 \pi^{2}$$
 A1

5. The appropriate test statistic is

$$TS = \frac{\overline{x} - \overline{y}}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}}$$

$$= \frac{52.6 - 49.8}{5\sqrt{\frac{1}{10} + \frac{1}{10}}}$$

$$= 1.25$$
M1

A1A1

EITHER

$$p$$
-value = 2×0.1056
= 0.2112 M1A1

This is greater than 0.01 so accept that concentrations are equal. A1

OR

Critical value =
$$2.576$$
 M1A1
The calculated value is less than this so accept that concentrations are equal.

6. (a) (i)
$$X \text{ is } B(20,p) \text{ (si)}$$
 B1
Sig level = $P(X \ge 14 \mid p = 0.5)$ M1A1
= 0.0577

(ii) We require
$$P(X \ge 14 \mid p = 0.7) = P(Y \le 6 \mid p = 0.3)$$
 M1A1 $= 0.608$ A1

(b) Under H₀, X is B(200,0.5)
$$\approx$$
 N(100,50) M1A1
$$z = \frac{119.5 - 100}{\sqrt{50}}$$
 m1A1
$$= 2.76$$
 A1
$$p\text{-value} = 0.00289$$
 A1
Strong evidence to support Dafydd's theory. B1

7. (a) (i) $H_0: \mu = 3 \text{ versus } H_1: \mu > 3$

(ii) In 5 days, number sold Y is Poi(15) under H₀. B1 p-value = P($Y \ge 20$) M1 = 0.1248 A1 We cannot conclude that the mean has increased. B1

(b) Under H₀ the number sold in 100 days is $Poi(300) \approx N(300,300)$

B1B1

$$z = \frac{329.5 - 300}{\sqrt{300}}$$
 M1A1
= 1.70 A1

p-value = 0.0446 A1

Significant at the 5% level because 0.0446 < 0.05. B1B1