AS Mathematics Unit 1: Pure Mathematics A

General instructions for marking GCE Mathematics

1. The mark scheme should be applied precisely and no departure made from it. Marks should be awarded directly as indicated and no further subdivision made.

2. Marking Abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only

MR = misread

PA = premature approximation

bod = benefit of doubtoe = or equivalentsi = seen or implied

ISW = ignore subsequent working

F.T. = follow through (✓ indicates correct working following an error and indicates a further error has been made)

Anything given in brackets in the marking scheme is expected but, not required, to gain credit.

3. Premature Approximation

A candidate who approximates prematurely and then proceeds correctly to a final answer loses 1 mark as directed by the Principal Examiner.

4. Misreads

When the <u>data</u> of a question is misread in such a way as not to alter the aim or difficulty of a question, follow through the working and allot marks for the candidates' answers as on the scheme using the new data.

This is only applicable if a wrong value, is used consistently throughout a solution; if the correct value appears anywhere, the solution is not classed as MR (but may, of course, still earn other marks).

5. Marking codes

- 'M' marks are awarded for any correct method applied to appropriate working, even though a numerical error may be involved. Once earned they cannot be lost.
- 'm' marks are dependant method marks. They are only given if the relevant previous 'M' mark has been earned.
- 'A' marks are given for a numerically correct stage, for a correct result or for an answer lying within a specified range. They are only given if the relevant M/m mark has been earned either explicitly or by inference from the correct answer.
- 'B' marks are independent of method and are usually awarded for an accurate result or statement.
- 'S' marks are awarded for strategy
- 'E' marks are awarded for explanation
- · 'U' marks are awarded for units
- 'P' marks are awarded for plotting points
- 'C' marks are awarded for drawing curves

AS Mathematics Unit 1: Pure Mathematics A

Solutions and Mark Scheme

Question Number	Solution	Mark	AO	Notes
1. (a)	A(1, -3)	B1	AO1	
	A correct method for finding the radius, e.g., trying to rewrite the equation of the circle in the form $(x - a)^2 + (y - b)^2 = r^2$	M1	AO1	
	Radius = 5	A1	AO1	
(b)	Gradient $AP = \frac{\text{increase in } y}{\text{increase in } x}$	M1	AO1	
	Gradient $AP = \frac{(-7) - (-3)}{4 - 1} = -\frac{4}{3}$	A1	AO1	(f.t. candidate's coordinates for <i>A</i>)
	Use of $m_{\text{tan}} \times m_{\text{rad}} = -1$	M1	AO1	
	Equation of tangent is: $y - (-7) = \frac{3}{4}(x - 4)$	A1 [7]	AO1	(f.t. candidate's gradient for <i>AP</i>)
2.	$7 \sin^2 \theta + 1 = 3(1 - \sin^2 \theta) - \sin^2 \theta$	M1	AO1	(correct use of $\cos^2 \theta = 1 - \sin^2 \theta$)
	An attempt to collect terms, form and solve			7 – 3111 0)
	a quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form			
	$(a \sin \theta + b)(c \sin \theta + d)$, with $a \times c =$ candidate's coefficient of $\sin^2 \theta$ and $b \times d =$ candidate's constant	m1	AO1	
	$10 \sin^2 \theta + \sin \theta - 2 = 0$ $\Rightarrow (2 \sin \theta + 1)(5 \sin \theta - 2) = 0$ $\Rightarrow \sin \theta = -\frac{1}{2}, \sin \theta = \frac{2}{5}$	A1	AO1	(c.a.o.)
	θ = 210°, 330°	B1 B1	AO1 AO1	
	θ = 23·57(8178)°, 156·42(182)°	B1	AO1	
	Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.			
	$\sin\theta$ = +, -, f.t. for 3 marks, $\sin\theta$ = -, -, f.t. for 2 marks $\sin\theta$ = +, +, f.t. for 1 mark			
		[6]		

Question	Solution	Mark	AO	Notes
Number 3.	$y + k = (x + h)^3$	M1	AO2	
	y + k = (x + h) y + k = $x^3 + 3x^2h + 3xh^2 + h^3$	A1	AO2	
	Subtracting <i>y</i> from above to find <i>k</i>	M1	AO2	
	$k = 3x^2h + 3xh^2 + h^3$	A1	AO2	
	Dividing by h and letting $h \to 0$	M1	AO2	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{limit}}{h \to 0} \frac{k}{h} = 3x^2$	A1 [6]	AO2	(c.a.o.)
4.	Correct use of the Factor Theorem to find at			
	least one factor of $f(x)$	M1	AO3	(
	At least two factors of $f(x)$	A1	AO3	(accept $(x - 2.5)$ as a
	f(x) = (x+3)(x-4)(2x-5)	A1	AO3	factor) (c.a.o.)
	Use of the fact that $f(x)$ intersects the y-axis			(0.0.0.)
	when $x = 0$	M1	AO3	
	f(x) intersects the y-axis at (0, 60)	A1	۸02	(f.t. candidate's
		[5]	AO3	expression for $f(x)$)
5. (a)	A correct method for finding the coordinates	[0]		
	of the mid-point of AB	M1	AO1	
	D has coordinates (- 1, 5)	A1	AO1	
	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$	M1	AO1	
	$\frac{\text{Gradient of } AB = \frac{1}{\text{increase in } x}}{\text{increase in } x}$			
	Gradient of $AB = -\frac{6}{2}$	A1	AO1	(or equivalent)
	_			
	Gradient of $CD = \frac{\text{increase in } y}{\text{increase in } x}$	(M1)	(AO1)	(to be awarded only if
	increase in x	(1011)	(AO1)	the previous M1 is not
	7			awarded)
	Gradient of $CD = \frac{7}{21}$	A1	AO1	(or equivalent)
	6 7			
	$-\frac{6}{2} \times \frac{7}{21} = -1 \Rightarrow AB$ is perpendicular to CD	B1	AO2	
(b)	A correct method for finding the length of			
	AD or CD	M1	AO1	
	$AD = \sqrt{10}$	A1	AO1	
	$CD = \sqrt{490}$	A1	AO1	
	$\tan C\hat{A}B = \frac{CD}{AD}$	M1	AO1	
	$\tan C\hat{A}B = 7$	A 4	A O 4	
		A1	AO1	
(c)	Isosceles	B1	AO2	
		[12]		

Question Number	Solution	Mark	AO	Notes
6. (a)	For statement A Choice of $c \neq -\frac{1}{2}$ and $d = -c - 1$ Correct verification that given equation is	M1	AO2	
	satisfied	A1	AO2	
(b)	For statement B Use of the fact that any real number has an unique real cube root $(2c+1)^3 = (2d+1)^3 \Rightarrow 2c+1 = 2d+1$	M1 A1	AO2 AO2	
	$2c + 1 = 2d + 1 \Rightarrow c = d$	A1 [5]	AO2	
7. (a)	(-11, 0) (-1, 0) \nearrow			
	Concave up curve and <i>y</i> -coordinate of minimum = – 4 <i>x</i> -coordinate of minimum = – 6 Both points of intersection with <i>x</i> -axis	B1 B1 B1	AO1 AO1 AO1	
(b)	$y = -\frac{1}{2}f(x)$	B2	AO2 AO2	
	If B2 not awarded $y = rf(x)$ with r negative	(B1) [5]	(AO2)	

Question Number	Solution	Mark	AO	Notes
8. (a) (b)	A kite A correct method for finding $TR(TS)$ $TR(TS) = \sqrt{96}$	B1 M1 A1	AO2 AO3 AO3	
	Area $OTR(OTS) = \frac{1}{2} \times \sqrt{96} \times 5$	M1	AO3	(f.t. candidate's derived value for <i>TR</i> (<i>TS</i>))
	Area OTRS = 2 × Area OTR(OTS)	m1	AO3	value for m(roj)
	Area <i>OTRS</i> = 20√6	A1 [6]	AO3	(c.a.o.)
9.	An expression for $b^2 - 4ac$ for the quadratic equation $4x^2 - 12x + m = 0$, with at least two of a , b or c correct	M1	AO1	
	$b^2 - 4ac = 12^2 - 4 \times 4 \times m$	A1	AO1	
	$b^2 - 4ac > 0$	m1	AO1	
	(0<) m < 9	A1	AO1	
	An expression for $b^2 - 4ac$ for the quadratic equation $3x^2 + mx + 7 = 0$, with at least two of a , b or c correct	(M1)		(to be awarded only if the corresponding M1 is not awarded above)
	12 4 2 04	A1	AO2	
	$b^2 - 4ac = m^2 - 84$	A1	AO2	
	$m^2 < 81 \Rightarrow b^2 - 4ac < -3$	A1	AO2	
	$b^2 - 4ac < 0 \Rightarrow$ no real roots	[7]	7.02	
10. (a)	$(\sqrt{3} - \sqrt{2})^5 = (\sqrt{3})^5 + 5(\sqrt{3})^4 (-\sqrt{2})$ + 10(\sqrt{3})^3 (-\sqrt{2})^2 + 10(\sqrt{3})^2 (-\sqrt{2})^3 + 5(\sqrt{3})(-\sqrt{2})^4 + (-\sqrt{2})^5	B2	AO1 AO1	(five or six terms correct)
	(If B2 not awarded , award B1 for three or four correct terms) $(\sqrt{3} - \sqrt{2})^5 = 9\sqrt{3} - 45\sqrt{2} + 60\sqrt{3} - 60\sqrt{2} + 20\sqrt{3} - 4\sqrt{2}$	B2	AO1	(six terms correct)
	(If B2 not awarded , award B1 for three, four or five correct terms)		AO1	
	$(\sqrt{3} - \sqrt{2})^5 = 89\sqrt{3} - 109\sqrt{2}$	B1	AO1	(f.t. one error)
(b)	Since $(\sqrt{3} - \sqrt{2})^5 \approx 0$, we may assume that $89\sqrt{3} \approx 109\sqrt{2}$	M1	AO3	(f.t candidate's answer to part (a) provided one coefficient is negative)
	Either: $89\sqrt{3} \times \sqrt{3} \approx 109\sqrt{2} \times \sqrt{3}$	m1	AO3	(f.t candidate's answer to part (a) provided one
	$\sqrt{6} \approx \frac{267}{109}$	A1	AO3	coefficient is negative) (c.a.o.)
	Or $89\sqrt{3} \times \sqrt{2} \approx 109\sqrt{2} \times \sqrt{2}$	(m1)	(AO3)	(f.t candidate's answer to part (a) provided one
	$\sqrt{6} \approx \frac{218}{89}$	(A1) [8]	(AO3)	coefficient is negative) (c.a.o.)

Question Number	Solution	Mark	AO	Notes
11.	$a > 0$ $b > a + 2$ $b < 6 + 4a - a^{2}$	B1 B1 B1	AO1 AO1 AO1	
		[3]		
12.	Let $p = \log_a 19$, $q = \log_7 a$ Then $19 = a^p$, $a = 7^q$	B1	AO2	(the relationship between log and
	$19 = a^p = \left(7^q\right)^p = 7^{qp}$	B1	AO2	power) (the laws of indices)
	$qp = \log_7 19$			(the relationship between log and power)
	$\log_7 a \times \log_a 19 = \log_7 19$	B1 [3]	AO2	(convincing)
13. (a)	Choice of variable (x) for $AB \Rightarrow AC = x + 2$	B1	AO3	
	$(x+2)^2 = x^2 + 12^2 - 2 \times x \times 12 \times \frac{2}{3}$	M1	AO3	
	$x^{2} + 4x + 4 = x^{2} + 144 - 16x$ $20x = 140 \Rightarrow x = 7$	A1	AO3	(Amand proof for
	AB=7, $AC=9$	A1	AO3	(Amend proof for candidates who choose $AC = x$)
(b)	$\sin A\hat{B}C = \frac{\sqrt{5}}{3}$	B1	AO1	
	$\frac{\sin B\hat{A}C}{12} = \frac{\sin A\hat{B}C}{9}$	M1	AO1	f.t. candidate's derived values for AC and $\sin A\hat{B}C$)
	$\sin B\hat{A}C = \frac{4\sqrt{5}}{9}$	A1 [7]	AO1	(c.a.o.)
14. (a)	Height of box = $\frac{9000}{2x^2}$	B1	AO3	(o.e.)
	$S = 2 \times (2x \times x + \frac{9000}{2x^2} \times x + \frac{9000}{2x^2} \times 2x$ $S = 4x^2 + \frac{27000}{x}$ $\frac{dS}{dx} = 8x - \frac{27000}{x^2}$	M1	AO3	(f.t. candidate's derived expression for height of
	$S = 4x^2 + \frac{27666}{x}$	A1	AO3	box in terms of <i>x</i>) (convincing)
(b)	$\frac{\mathrm{d}S}{\mathrm{d}x} = 8x - \frac{27000}{x^2}$	B1	AO1	
	Putting derived $\frac{dS}{dx} = 0$	M1	AO1	dS
	x = 15	A1	AO1	(f.t. candidate's $\frac{dS}{dx}$)
	Stationary value of S at $x = 15$ is 2700 A correct method for finding nature of the	A1	AO1	(c.a.o)
	stationary point yielding a minimum value	B1 [8]	AO1	

Quest Numb		Solution	Mark	AO	Notes
15. (a	•	A represents the initial population of the island. $100 = Ae^{2k}$	B1	AO3	
	<i>'</i>)	$160 = Ae$ $160 = Ae^{12k}$ Dividing to eliminate A $1 \cdot 6 = e^{10k}$	B1 M1 A1	AO1 AO1 AO1	(both values)
		$k = \frac{1}{10} \ln 1.6 = 0.047$	A1	AO1	(convincing)
(c	:)	A = 91(.0283)	B1	AO1	(o.e.)
		When $t = 20$, $N = 91(.0283) \times e^{0.94}$	M1	AO1	(f.t. candidate's derived value for <i>A</i>)
		<i>N</i> = 233	A1 [8]	AO3	(c.a.o.)
16.		$f'(x) = 3x^2 - 10x - 8$	M1	AO1	(At least one non-zero
		$f'(x) = 3x^2 - 10x - 8$ Critical values $x = -\frac{2}{3}$, $x = 4$	A1	AO1	term correct) (c.a.o)
		For an increasing function, $f'(x) > 0$	m1	AO1	
		For an increasing function $x < -\frac{2}{3}$ or $x > 4$	A2	AO2 AO2	(f.t. candidate's derived two critical values for <i>x</i>)
		Deduct 1 mark for each of the following errors the use of non-strict inequalities the use of the word 'and' instead of the word 'or'	[5]	7.02	two officer values for x)

Question	Solution	Mark	AO	Notes
Number 17. (a)				(At least one non-zero
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - 2x$	M1	AO1	term correct)
	An attempt to find the value of $\frac{dy}{dx}$ at $x = 2$	m1	AO1	
	At $x = 2$, $\frac{dy}{dx} = -1$ Equation of tangent at <i>B</i> is	A1	AO1	(c.a.o.)
	y-2=-1(x-2)	A1	AO1	(f.t. candidate's value
				for $\frac{dy}{dx}$ at $x = 2$)
(b)	x-coordinate of $A = 3$	B1	AO1	(derived)
	x-coordinate of $C = 4$	B1	AO1	(derived)
	If <i>D</i> is the foot of the perpendicular from <i>B</i> to the <i>x</i> -axis, area of triangle $BDC = 2$	B1	AO1	(f.t. candidate's derived x-coordinate of C)
	Area under curve = $\int_{2}^{3} (3x - x^{2}) dx$	M1	AO3	(use of integration) (f.t. candidate's derived
	$\frac{3x^2}{2} - \frac{x^3}{3}$	A1	AO3	x-coordinate of A) (correct integration)
	Area under curve = $(27/2 - 9) - (6 - 8/3)$	m1	AO3	(an attempt to substitute limits,
	Shaded area = Area of triangle <i>BDC</i> – Area under curve	m1	AO3	f.t. candidate's derived x-coordinate of A) (f.t. candidate's derived x-coordinates of A and
	Shaded area = 5/6	A1 [12]	AO3	C) (c.a.o.)
18. (a) (i)	$4\mathbf{u} - 3\mathbf{v} = 20\mathbf{i} - 27\mathbf{j}$	B1	AO1	
(ii)	A correct method for finding the length of UV	B1 M1	AO1 AO1	
(b) (i)	Length of <i>UV</i> = 10 Position vector of	A1	AO1	
	$C = \frac{1}{10}\mathbf{a} + \frac{9}{10}\mathbf{b} \text{ or } C = \frac{9}{10}\mathbf{a} + \frac{1}{10}\mathbf{b}$	M1	AO3	
	Position vector $C = \frac{1}{10}\mathbf{a} + \frac{9}{10}\mathbf{b}$	A1	AO3	
(ii)	The position vector of any point on the road will be of the form $\lambda \mathbf{a} + (1 - \lambda)\mathbf{b}$ for some			
	value of λ	B1 [7]	AO2	