A2 Mathematics Unit 4: Applied Mathematics B

Solutions and Mark Scheme

SECTION A - Statistics

Qu. No.	Solution	Mark	AO	Notes
1(a)	B 0.98 A 0.04 B' 0.02 B 0.01 A' 0.96 B' 0.99	M1	AO1	diagram
	A = the event that a person has the disease. B = the event that a positive response is obtained			
	$Prob = 0.96 \times 0.99 = 0.9504$	A1	AO2	
	Alternative mark scheme for (a):			
	Prob = 0.96 × 0.99 = 0.9504	(M1) (A1)	(AO1) (AO2)	
(b)	$P(B) = 0.04 \times 0.98 + 0.96 \times 0.01$ $= 0.0488$	M1 A1	AO3 AO1	
(c)	$P(A B) = \frac{P(A \cap B)}{P(B)}$			
	$=\frac{0.04\times0.98}{0.0488}$	M1	AO3	
	= 0.803(278688)	A1	AO1	
		[6]		

Qu. No.	Solution	Mark	AO	Notes
2(a)(i)	P(J wins with 1 st shot) =P(M misses) × P(J hits) $= 0.75p$	M1 A1	AO1 AO1	
(ii)	J wins with his second shot if the first three shots miss and then J hits the target with his second shot.	M1	AO3	
	P(J wins with 2^{nd} shot) = $0.75 \times (1 - p)$ $\times 0.75 \times p$	A1	AO2	
(b)	P(J wins game) = $0.75p + 0.75^{2}(1 - p)p + 0.75^{3}(1 - p)^{2}p +$	M1	AO3	
	Attempting to sum an infinite geometric series	M1	AO3	
	$=\frac{0.75p}{1-0.75(1-p)}$	A1	AO2	
	$=\frac{3p}{1+3p}$			
(c)	Mary is more likely to win if			
	$\frac{3p}{1+3p} < 0.5$	M1	AO3	
	leading to $p < \frac{1}{3}$	A1 [9]	AO1	
3(a)	Continuous uniform distribution on	B1	AO3	
	[30,60] Mean = 45 Variance = 75	B1 B1	AO1 AO1	
(b)	$P(\pi R^2 > 100) = P\left(R > \sqrt{\frac{100}{\pi}}\right)$	M1	AO3	
	$= P \left(L > 2\pi \sqrt{\frac{100}{\pi}} \right)$	A1	AO2	
	= P(L > 35.45)	A1	AO1	
	$= \frac{60 - 35.45}{30} = 0.818(3) \text{ or } \frac{491}{600}$	A1	AO1	
		[7]		

Qu. No.	Solution	Mark	AO	Notes
4(a)	Bell shaped	B1	AO2	Or Most values cluster in the middle of the range and the rest taper off symmetrically toward either extreme B0 for symmetrical only
(b)	1- P(6.12 < X < 8.12)	M1	AO3	Or $P(X < 6.12) + P(X > 8.12)$
	= 1- 0.9949(0744) = 0.0051 (or 0.51%)	A1	AO1	M1A0 For 0.9949(0744)
(c)(i)	The population of weights of 2p coins is normally distributed.	B1	AO2	B1B0 The weights of 2p coins are
	Mean and median in the sample are very similar, suggesting a symmetric distribution.	B1	AO2	normally distributed. Population must be stated or implied.
(ii)	H _o : The mean weight of all 2p coins in this batch = 7.12g H ₁ : The mean weight of all 2p coins in this batch < 7.12g (one-sided)	B1	AO3	Or H _o : µ= 7.12g B0 for H _o : Mean = 7.12g Population must be stated or implied, ie. the batch of 2p coins
	p-value = P(\bar{x} < 6.89 H ₀) = P $\left(z < \frac{6.89 - 7.12}{\frac{0.357}{\sqrt{30}}}\right)$	M1	AO1	ET two sided test
	= P(z < -3.52(874))	A1	AO1	FT two-sided test
	= 0.00021 (allow 0.00022) Since <i>p</i> -value<0.01, Reject H _o	A1 A1	AO1 AO2	p-value = 2 × 0.00021 = 0.00042
	Very strong evidence to suggest the mean weight of the batch of 2p coins is less than 7.12(g)	E1	AO3	
	Alternative Solution:			
	$TS = \frac{6.89 - 7.12}{\frac{0.357}{6\pi}}$	(M1)	(AO1)	FT Two-sided test CVs = ± 2.576
	= -3.52(874) $CV = -2.32(63)$	(A1) (A1)	(AO1) (AO1)	Since TS< - 2.576
	Since TS< CV Reject H _o	(A1)	(AO2)	
	Very strong evidence to suggest the mean weight of the batch of 2p coins is less than 7.12(g)	(E1)	(AO3)	
	1633 HIGH 7.12(g)	[11]		

Qu. No.	Solution	Mark	AO	Notes
5(a)	H ₀ : $\rho = 0$ H ₁ : $\rho \neq 0$ two-sided TS = 0.895 CV = ±0.4821 Since TS>0.4821, Reject H _o Strong evidence to suggest the correlation coefficient is greater than zero	B1 B1 B1 B1	AO3 AO1 AO1 AO2 AO3	H_{0} : $\rho=0$ H_{1} : $\rho>0$ one-sided Population stated or implied TS=0.895 $CV=\pm0.412$ Since $TS>0.412$, Reject H_{0} Strong evidence to suggest the correlation coefficient is greater than zero
(b)	P-value for correlation between Value for money and Cost per night is > 0.05 Cost per night does not seem to be correlated to Value for money.	E1	AO2 AO2	
		[7]		

SECTION B – Differential Equations and Mechanics

Question Number	Solution	Mark	AO	Notes
6. (a)	$\mathbf{a} = \mathbf{F/m} = \frac{1}{4} (4\mathbf{i} - 12\mathbf{j})$ $\mathbf{a} = \mathbf{i} - 3\mathbf{j}$	M1	AO3	
	Use $\mathbf{v} = \mathbf{u} + \mathbf{a}t$, $\mathbf{u} = -\mathbf{i} + 4\mathbf{j}$, $\mathbf{a} = \mathbf{i} - 3\mathbf{j}$ $\mathbf{v} = (-\mathbf{i} + 4\mathbf{j}) + 5(\mathbf{i} - 3\mathbf{j})$ $\mathbf{v} = 4\mathbf{i} - 11\mathbf{j}$	M1 A1	AO2 AO1	
(b)	$s = ut + \frac{1}{2}at^2 + 7i - 26j$	M1	AO2	position vector relative to initial position vector. adding initial positionvector.
	2(1,41), 1,4,4,6,21	m1	AO2	
	$\mathbf{s} = 2(-\mathbf{i} + 4\mathbf{j}) + \frac{1}{2} \times 4 \times (\mathbf{i} - 3\mathbf{j}) + (7\mathbf{i} - 26\mathbf{j})$ $\mathbf{s} = 7\mathbf{i} - 24\mathbf{j}$	A1	AO1	
	$\begin{vmatrix} \mathbf{s} = \sqrt{7^2 + 24^2} \\ \mathbf{s} = 25 \end{vmatrix}$	m1 A1 [8]	AO1 AO1	
7. (a)	Attempt to resolve in 2 directions	M1	AO3	dimensionally correct equation, no omitted or extra forces
	$T_1 \cos 23^{\circ} = T_2 \cos 40^{\circ}$ $T_1 \sin 23^{\circ} + T_2 \sin 40^{\circ} = 160$	A1 A1	AO2 AO2	correct equation correct equation
	Attempt to solve simultaneously	m1	AO1	any valid method
	$T_1 = 137.56(028)$ (N) $T_2 = 165.29(707)$ (N)	A1 A1	AO1 AO1	
(b)	Object modelled as particle Cable modelled as light strings	B1 B1	AO3 AO3	
		[8]		

Question Number	Solution	Mark	AO	Notes
8. (a)	$\frac{\mathrm{d}P}{\mathrm{d}t} = kP$	M1	AO3	
	$\int \frac{\mathrm{d}P}{P} = \int k dt$	m1	AO2	separation of variables
	$ \ln P = kt + C $	A1	AO1	correct integration
	when $t = 0$, $P = 10$ $C = \ln 10$	m1	AO2	
	$\ln \frac{P}{10} = kt$			
	$e^{kt} = \frac{P}{10}$	m1	AO2	
	$P = 10 e^{kt}$	A1	AO1	
(b)	When $t = 1$, $P = 20$ $k = \ln 2$ $\ln 0 \cdot 1P$	M1	AO2	
	$t = \frac{\ln 0 \cdot 1P}{\ln 2}$ When $P = 1000000$			
	$t = \frac{\ln 100000}{\ln 100000}$	m1	AO1	
	$\ln 2$ $t = 16.61$ hours	A1 [9]	AO1	
9.	F ← mg			
	$R = mg = 12 \times 9.8 \ (= 117.6 \ N)$ Maximum friction = μR Maximum friction = $0.8 \times 12 \times 9.8$ (= 94.08N)	B1 M1 A1	AO1 AO3 AO1	used
	Therefore frictional force = 75 (N) because Max friction > tractive force	B1 E1	AO3 AO3	
		[5]		

Question Number	Solution	Mark	AO	Notes
10. (a)	$x = (V\cos\theta)t$	B1	AO1	
	$y = (V\sin\theta)t - \frac{1}{2}gt^2$	B1	AO1	
(b)	$y = 0$ for time of flight $t = \frac{2V \sin \theta}{g}$	M1	AO2	
	Range $R = V\cos\theta$. $\frac{2V\sin\theta}{g}$	m1	AO2	
	$R = \frac{V^2 \sin 2\theta}{g}$	A1	AO2	
(c) (i)	At maximum range, $\sin 2\theta = 1$ $\theta = 45^{\circ}$	M1	AO3	oe
	$\frac{V^2}{g}$ = 392 V = 62.0 (ms ⁻¹)	A1	AO1	cao
(ii)	$t = \frac{2 \times 62 \cdot 0 \times \sin 45}{g}$			
	t = 8.95 (s)	A1	AO1	cao
(iii)	Max height when $t = 4.47$ s,	m1	AO2	
	$y_{max} = 62.5 \times \sin 45^{\circ} \times 4.47 - \frac{1}{2} \times 9.8 \times 4.47^{2}$			
	$y_{max} = 98.1 \text{ (m)}$	A1	AO1	cao
		[10]		