Mathematics M1

Notes: cao

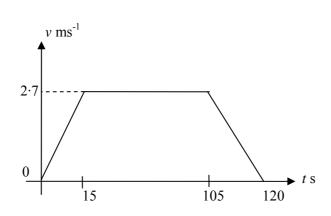
cao = correct answer only, oe = or equivalent, si = seen or implied,

ft = follow through

(c) = candidate's value acceptable

1. (a) Use of $v^2 = u^2 + 2as$ with $u = (\pm)2.1$, $a = (\pm)9.8$, $s = (\pm)15.4$ M1 $v^2 = 2.1^2 + 2 \times 9.8 \times 15.4$ A1

 $v = 17.5 \text{ (ms}^{-1})$ cao A1


(b) Use of v = u + at with v = 17.5(c), $a = (\pm)9.8$, $u = (\pm)2.1$ oe M1

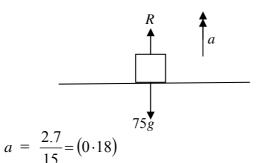
17.5 = 2.1 + 9.8t

 $t = \frac{11}{7}$ cao A1

2.

(a)

attempt at v-t graph with one correct section and axes M1


second correct section A1

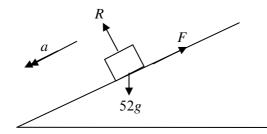
completely correct graph with labels A1

(b) Distance = $0.5(90 + 120) \times 2.7$ attempt to calculate total area M1 any correct value for an area B1

= 283.5 (m) cao A1

(c)

Apply N2L to woman R - 75g = 75a


B1

all forces, dim correct M1 correct equation A1

R = 75(9.8 + 0.18)

$$R = 75(9.8 + 0.18)$$

= $748.5 (N)$ ft a A1

3.

$$\sin\alpha = \frac{5}{13}$$

$$\cos\alpha = \frac{12}{13}$$

Resolve perpendicular to plane

M1

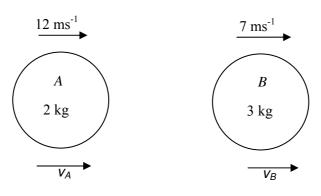
$$R = 52g\cos\alpha$$

$$F = \mu R$$

$$= 0.2 \times 52 \times 9.8 \times \frac{12}{13}$$

$$= 94.08 \text{ (N)}$$
m1
si A1

Apply N2L to object down slope


Dim correct, all forces M1

A1

$$52g\sin\alpha - F = 52a$$

 $52 \times 9.8 \times \frac{5}{13} - 94.08 = 52a$
 $a = 1.96 \text{ (ms}^{-2}\text{)}$

cao A1

4.

M1

$$2 \times 12 + 3 \times 7 = 2v_A + 3v_B$$

A1

$$2v_A + 3v_B = 45$$

M1

attempt at restitution equation

$$v_B - v_A = -0.6(7 - 12)$$

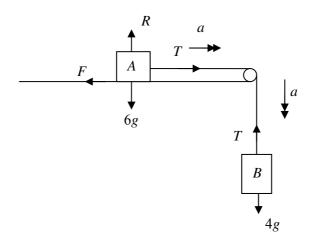
 $-3v_A + 3v_B = 9$

A1

Both M's m1

$$5 v_A = 36$$

 $v_A = 7.2 (r$


$$5 v_A = 36$$

 $v_A = 7.2 \text{ (ms}^{-1}\text{)}$
 $v_B = 10.2 \text{ (ms}^{-1}\text{)}$

cao A1

$$I = 3(10.2 - 7)$$

= 9.6 (Ns)

ft sensible results only A1

5.

(a) Apply N2L to
$$B/A$$
 M1
 $4g - T = 4a$ A1

Apply N21 to other particle M1
$$T - F = 6a$$
 A1

Resolve vertically, particle A

$$R = 6g$$
 si B1
 $F = \mu R = 0.4 \times 6g = 2.4g$ B1

attempt to solve equations simultaneously

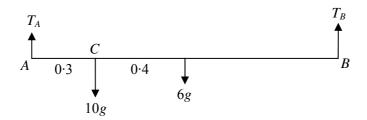
$$4g - 2.4g = 10a$$

 $a = 0.16g = 1.568 \text{ (ms}^{-2})$ cao A1
 $T = 32.928 \text{ (N)}$ cao A1

m1

- (b) Light strings enable the assumption that tension is constant throughout the string to be used.
- 6. Attempt to resolve in direction of 12 N force M1 $Y = 12 5\sqrt{3} \sin 60^{\circ} 3\sqrt{2} \sin 45^{\circ}$ Y = 1.5

Attempt to resolve in perpendicular direction M1


$$X = 5\sqrt{3} \cos 60^{\circ} - 3\sqrt{2} \cos 45^{\circ}$$
 A1
 $X = 1.33$

Resultant
$$R = \sqrt{(1.5)^2 + 1.33^2}$$
 M1
= $2.(0048)$ (N) ft A1

$$\theta = \tan^{-1} \left(\frac{1.33}{1.50} \right) = 41.6^{\circ}$$
 M1

Dir of R is 41.6° to the right with the 12 N force ft A1

7.

Moments about A

dim. correct equation, all forces M1

any correct moment B1

$$1.4 T_B = 0.7 \times 6g + 0.3 \times 10g$$

$$T_B = \underline{50.4 (N)}$$
Resolve vertically dim correct, all forces
$$T_A + T_B = 16g$$

$$T_A = \underline{106.4 (N)}$$
A1

A1

A2

A2

A1

A1

A1

A1

8. Use of
$$s = ut + 0.5at^2$$
 with $s = 95$, $t = 5$ M1
 $95 = 5u + 0.5 \times a \times 25$ A1

Use of
$$v = u + at$$
 with $t = 7$. $v = 29.8$ M1
29.8 = $u + 7a$ A1

attempt to solve simultaneously

m110.8 = 4.5aa = 2.4cao A1 u = 13cao A1

9. (a) Lamina Area from
$$AD$$
 from AB

$$ABCD 80 4 5$$

$$XYZ 9 3 3$$

$$Decoration 89 x y$$

one correct pair of distances B1

all four correct B1

correct areas B1

Moments about
$$AD$$
 M1
 $89 x = 80 \times 4 + 9 \times 3$ ft A1
 $x = \underline{3.90 \text{ (cm)}}$ cao A1

Moments about
$$AB$$
 M1
 $89y = 80 \times 5 + 9 \times 3$ ft A1
 $y = 4.80 \text{ (cm)}$ cao A1

(b)
$$\theta = \tan^{-1} \left(\frac{x}{10 - y} \right)$$
 correct triangle M1
$$= \tan^{-1} \left(\frac{3.9}{10 - 4.8} \right)$$
 ft A1
$$= 36.9^{\circ}$$