C3

1. (a) 1 1.386294361
1.25 1.517870719
1.5 1.658228077
1.75 1.802122256 (5 values correct) B2
2 1.945910149 (3 or 4 values correct) B1
Correct formula with
$$h = 0.25$$
 M1
 $I \approx 0.25 \times \{1.386294361 + 1.945910149$
 $3 + 4(1.517870719 + 1.802122256) + 2(1.658228077)\}$
 $I \approx 19.92863256 \div 12$
 $I \approx 1.66071938$
 $I \approx 1.6607$ (f.t. one slip) A1

Note: Answer only with no working earns 0 marks

(b)
$$\int_{1}^{2} \ln \left[\frac{1}{3 + x^{2}} \right] dx \approx -1.6607$$
 (f.t. candidate's answer to (a)) B1

2.
$$2\csc^2\theta + 3(\csc^2\theta - 1) + 4\csc\theta = 9$$

(correct use of $\cot^2\theta = \csc^2\theta - 1$) M1

An attempt to collect terms, form and solve quadratic equation in cosec θ , either by using the quadratic formula or by getting the expression into the form $(a \csc \theta + b)(c \csc \theta + d)$,

with $a \times c = \text{coefficient of cosec}^2 \theta$ and $b \times d = \text{candidate's constant}$ m1 $5 \operatorname{cosec}^2 \theta + 4 \operatorname{cosec} \theta - 12 = 0 \Rightarrow (5 \operatorname{cosec} \theta - 6)(\operatorname{cosec} \theta + 2) = 0$

$$\Rightarrow$$
 cosec $\theta = \underline{6}$, cosec $\theta = -2$

$$\Rightarrow \sin \theta = \frac{5}{6}, \sin \theta = -\frac{1}{2}$$
 (c.a.o.) A1

$$\theta = 56.44^{\circ}, 123.56^{\circ}$$
 B1
 $\theta = 210^{\circ}, 330^{\circ}$ B1 B1

B1 B1

 $\sin \theta = +, -, \text{ f.t. for 3 marks}, \sin \theta = -, -, \text{ f.t. for 2 marks}$ $\sin \theta = +, +, \text{ f.t. for 1 mark}$

candidate's x-derivative = $3t^2$

(*b*)

(i)

candidate's y-derivative =
$$4t + 20t^3$$

(one term correct B1, all three terms correct B2)

$$\frac{dy}{dt} = \frac{\text{candidate's y-derivative}}{\text{candidate's x-derivative}}$$

$$\frac{dy}{dt} = \frac{4 + 20t^2}{3t}$$
(c.a.o.) A1
$$\frac{dy}{dt} = 5 \Rightarrow 20t^2 - 15t + 4 = 0$$

$$\frac{dy}{dt} = \frac{4 + 20t^2}{3t}$$
(f.t. candidate's expression for $\frac{dy}{dt}$ from (i)) B1
$$\frac{dx}{dt}$$
Considering $b^2 - 4ac$ for candidate's quadratic
$$b^2 - 4ac = 225 - 320 < 0$$
 and hence no such real value of t exists

4. (a)
$$f'(x) = (11) \times g(x) - 6x$$

where $g(x) =$ either $\frac{2}{1 + (2x)^2}$ or $\frac{1}{1 + (2x)^2}$ or $\frac{2}{1 + 2x^2}$ M1
$$f'(x) = 11 \times \frac{2}{1 + 4x^2} - 6x$$
 A1

$$f'(x) = 0 \Rightarrow 12x^3 + 3x - 11 = 0$$
 (convincing) A1

(f.t. candidate's quadratic) A1

A1

(b)
$$x_0 = 0.9$$

 $x_1 = 0.884366498$ (x_1 correct, at least 5 places after the point) B1
 $x_2 = 0.886029122$
 $x_3 = 0.885852598$
 $x_4 = 0.885871344 = 0.88587$ (x_4 correct to 5 decimal places) B1
Let $h(x) = 12x^3 + 3x - 11$

An attempt to check values or signs of
$$h(x)$$
 at $x = 0.885865$, $x = 0.885875$ M1 $h(0.885865) = -1.42 \times 10^{-4} < 0$, $h(0.885875) = 1.70 \times 10^{-4} > 0$ A1 Change of sign $\Rightarrow \alpha = 0.88587$ correct to five decimal places A1

5. (a)
$$\frac{dy}{dx} = \frac{1}{3} \times (9 - 2x)^{-2/3} \times f(x)$$
 (f(x) \neq 1) M1

$$\frac{dy}{dx} = -\frac{2}{3} \times (9 - 2x)^{-2/3}$$
 A1

(b)
$$\frac{dy}{dx} = \frac{f(x)}{\cos x}$$
 (including $f(x) = 1$) M1
$$\frac{dy}{dx} = \frac{\pm \sin x}{\cos x}$$
 A1
$$\frac{dy}{dx} = -\tan x$$
 (c.a.o.) A1

(c)
$$\frac{dy}{dx} = x^3 \times f(x) + \tan 4x \times g(x)$$

$$\frac{dy}{dx} = x^3 \times f(x) + \tan 4x \times g(x)$$

$$\frac{dy}{dx} = x^3 \times f(x) + \tan 4x \times g(x)$$
(either $f(x) = 4 \sec^2 4x$ or $g(x) = 3x^2$) A1
$$\frac{dy}{dx} = x^3 \times 4 \sec^2 4x + \tan 4x \times 3x^2$$
(all correct) A1

(d)
$$\frac{dy}{dx} = \frac{(3x+2)^4 \times k \times e^{6x} - e^{6x} \times 4 \times (3x+2)^3 \times m}{[(3x+2)^4]^2}$$
with either $k = 6$, $m = 3$ or $k = 6$, $m = 1$ or $k = 1$, $m = 3$ M1
$$\frac{dy}{dx} = \frac{(3x+2)^4 \times 6 \times e^{6x} - e^{6x} \times 4 \times (3x+2)^3 \times 3}{[(3x+2)^4]^2}$$

$$\frac{dy}{dx} = \frac{18x \times e^{6x}}{(3x+2)^5}$$
(c.a.o.) A1

6. (a) (i)
$$\int \frac{9}{4x+3} dx = k \times 9 \times \ln|4x+3| + c \qquad (k=1,4, \frac{1}{4}) \qquad M1$$

$$\int \frac{9}{4x+3} dx = \frac{9}{4} \times \ln|4x+3| + c \qquad A1$$
(ii)
$$\int 3e^{5-2x} dx = k \times 3 \times e^{5-2x} + c \qquad (k=1,-2,-\frac{1}{2}) \qquad M1$$

$$\int 3e^{5-2x} dx = -\frac{3}{2} \times e^{5-2x} + c \qquad A1$$
(iii)
$$\int \frac{5}{(7x-1)^3} dx = \frac{k \times 5 \times (7x-1)^{-2}}{-2} + c \qquad (k=1,7,\frac{1}{7}) \qquad M1$$

$$\int \frac{5}{(7x-1)^3} dx = \frac{5 \times (7x-1)^{-2}}{-2 \times 7} + c \qquad A1$$

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int \cos\left[3x - \frac{\pi}{6}\right] dx = \begin{bmatrix} k \times \sin\left[3x - \frac{\pi}{6}\right] \end{bmatrix} \qquad (k = 1, 3, \pm^{1/3}) \qquad M1$$

$$\int \cos\left[3x - \frac{\pi}{6}\right] dx = \begin{bmatrix} 1/3 \times \sin\left[3x - \frac{\pi}{6}\right] \end{bmatrix} \qquad A1$$

$$\int \cos\left[3x - \frac{\pi}{6}\right] dx = k \times \begin{bmatrix} \sin\left[\frac{5\pi}{6}\right] - \sin\left[-\frac{\pi}{6}\right] \end{bmatrix} \qquad (A \text{ correct method for substitution of limits} \qquad f.t. \text{ only candidate's value for } k, k = 1, 3, \pm^{1/3}) \qquad m1$$

$$\int \cos\left[3x - \frac{\pi}{6}\right] dx = \frac{1}{3} \qquad (c.a.o.) \qquad A1$$

Note: Answer only with no working earns 0 marks

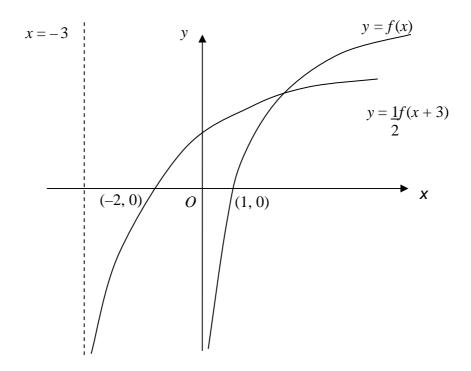
7.	(a)	Choice of <i>a</i> , <i>b</i> , with one positive and one negative and or correctly evaluated Both sides of identity evaluated correctly	ne side	M1 A1
	(b)	Trying to solve $2x + 1 = 3x - 4$ Trying to solve $2x + 1 = -(3x - 4)$ x = 5, x = 0.6 (both va	alues)	M1 M1 A1
		Alternative mark scheme		

$$(2x + 1)^2 = (3x - 4)^2$$
 (squaring both sides) M1

$$5x^2 - 28x + 15 = 0$$
 (c.a.o.) A1

$$x = 5, x = 0.6$$
 (both values, f.t. one slip in quadratic) A1

8.



Correct shape, including the fact that the y-axis is an asymptote for

$$y = f(x)$$
 at $-\infty$

$$y = f(x)$$
 cuts x-axis at $(1, 0)$

Correct shape, including the fact that x = -3 is an asymptote for

$$y = \frac{1}{2}f(x+3) \text{ at } -\infty$$

$$y = \frac{1}{2}f(x+3)$$
 cuts x-axis at (-2, 0) (f.t. candidate's x-intercept for $f(x)$) B1

The diagram shows that the graph of y = f(x) is steeper than the graph of $y = \underline{1}f(x + 3)$ in the first quadrant **B**1 2

9. (a)
$$y + 3 = e^{2x+1}$$
 B1

An attempt to express equation as a logarithmic equation and to isolate x

isolate x M1

$$x = 1 [\ln (y+3) - 1]$$
 (c.a.o.) A1

$$x = \frac{1}{2} [\ln (y+3) - 1]$$
 (c.a.o.) A1

$$f^{-1}(x) = \frac{1}{2} [\ln (x+3) - 1]$$
(f.t. one slip in candidate's expression for x) A1

(b)
$$D(f^{-1}) = (a, b)$$
 with $a = -3$ B1 $b = -2$

 $R(f) = (-19, \infty)$ **10. B**1 (a) $R(g) = (-\infty, -2)$ B1

(*b*) $D(fg) = (6, \infty)$ B1 $R(fg) = (-15, \infty)$ B1

 $fg(x) = \left[1 - \frac{1}{2}x\right]^2 - 19$ (i) **B**1 (*c*)

Putting expression for fg(x) equal to 2x - 26 and setting up a quadratic in x of the form $ax^2 + bx + c = 0$ M1 $\frac{1}{4}x^2 - 3x + 8 = 0 \Rightarrow x = 4, 8$ (c.a.o.) A1 (ii)

Rejecting x = 4 and thus x = 8(c.a.o.) **A**1