

## **GCE MARKING SCHEME**

MATHEMATICS AS/Advanced

**SUMMER 2011** 

1. (a) (i) 
$$z = \frac{30-28}{2} = 1.0$$
 M1A1

Prob = 0.1587 cao

[Award full marks for answer only]

(ii) Distribution of  $\overline{X}$  is N(28, 4/5) M1A1

[Award M1A0 for N and 1 correct parameter]

 $z = \frac{30-28}{\sqrt{4/5}} = 2.24$  m1A1

Prob = 0.987 cao

[Award m0A0A0 for answer only]

(b) Let  $A,B$  denote the times taken by Alan, Brenda. Then  $A - B$  is N(3,13).

[Award M1A0 for N and 1 correct parameter]

We require  $P(B > A) = P(A - B < 0)$ 
 $z = \frac{0-3}{\sqrt{13}} = -0.83$  [Accept +0.83] m1A1

Prob = 0.2033 cao

[Award m0A0A0 for answer only]

2. (a)  $\overline{x} = \frac{1290}{60}$  (= 21.5) B1

SE of  $\overline{X} = \frac{0.5}{\sqrt{60}}$  (= 0.0645...) B1

95% conf limits are

21.5 ± 1.96 × 0.0645

[M1 correct form, A1 1.96]

giving [21.37, 21.63] cao

A1

(b) We solve

 $3.92 \times \frac{0.5}{\sqrt{n}} < 0.1$  M1A1

 $n > 384.16$  [Award M1A0A0 for 1.96 in place of 3.92]

Minimum sample size is 385. B1

[Award B1 for rounding up their  $n$ ]

3. (a) 
$$H_0: \mu = 0.5; H_1: \mu < 0.5$$
 B1

(b) Under  $H_0$ , mean = 15
 p-value =  $P(X \le 12|\mu = 15)$  M1
 =  $0.2676$  cao A1
 Insufficient evidence to reject  $H_0$ . B1
 | IFT their p-value|

(c) X is now Po(100) which is approx N(100,100) si B1
 =  $\frac{80.5 - 100}{\sqrt{100}}$  M1A1

[Award M1A0 for incorrect continuity correction]
 = -1.95
 | 80 gives  $z = -2$ , p = 0.02275;79.5 gives  $z = -2.05$ , p = 0.02018]
 p-value = 0.0256
 Strong evidence to accept  $H_1$ . B1
 [FT their p-value]

4. (a)  $H_0: \mu_x = \mu_y; H_1: \mu_x \neq \mu_y$  B1
 (b)  $\bar{x} = \frac{114.8}{8} (=14.35)$  B1
  $\bar{y} = \frac{98.0}{7} = (14.0)$  B1

SE  $(\bar{X} - \bar{Y}) = \sqrt{\frac{0.5^2}{8} + \frac{0.5^2}{7}}$  (= 0.2587..) M1A1
  $z = \frac{14.35 - 14.0}{0.2587..}$  A1
 p-value = 0.177
 Insufficient evidence to reject her belief (at the 5% level). B1
 [FT their p-value, conclusion must refer to her belief]

5. (a)  $f(u) = \frac{1}{b-a}$ ,  $a \le u \le b$ , (= 0 otherwise) B1
  $E(U^2) = \frac{1}{(b-a)} \int_a^b u^2 du$  (Limits not required here) M1
  $\frac{1}{(b-a)} \left(\frac{u^3}{3}\right)^a$  A1
  $\frac{1}{(b-a)} \left(\frac{u^3-a^3}{3}\right)$  A1

|        | (i) $E(X) = 3, Var(X) = 3$<br>ii) $Y = 12 - X$<br>$E(XY) = E(12X - X^2)$       | B1B1<br>B1<br>M1 |
|--------|--------------------------------------------------------------------------------|------------------|
|        | $= 12 \times 3 - \frac{36}{3}$                                                 | A1               |
|        | 3                                                                              |                  |
|        | [FT their values from (i)]<br>= 24                                             | A1               |
| (1     | ii) Let T denote the total length.                                             |                  |
|        | Then <i>T</i> is approx N(300,300). [Award M1A0 for N and 1 correct parameter] | M1A1             |
|        | <u>.</u>                                                                       |                  |
|        | $z = \frac{280 - 300}{\sqrt{300}} = -1.15$                                     | m1A1             |
|        | Prob = 0.8749                                                                  | A1               |
|        | [Award m1A0A1 for use of continuity correction giving                          |                  |
|        | z = -1.13, $p = 0.8708$ or $z = nm - 1.18$ , $p = 0.8810$                      |                  |
| 6. (a) | (i) $X \text{ is } B(20,0.3) \text{ si}$                                       | B1               |
|        | $P(Accept H_1   H_0 true) = P(X \ge 9)   p = 0.3)$                             | M1               |
| G      | = 0.1133 i) X is B(20,0.6)                                                     | A1<br>B1         |
| ()     | P(Accept H <sub>0</sub>   H <sub>1</sub> true = P( $X \le 8   p = 0.6$ )       | M1               |
|        | The number of tails, $T$ , is B(20,0.4)                                        | m1               |
|        | Required prob = $P(T \ge 12 \mid p = 0.4)$                                     | A1               |
|        | =0.0565                                                                        | A1               |
| (b)    | (i) Y is B(80,0.3) which is approx N(24,16.80)                                 | B1               |
| , ,    | $P(Accept H_1   H_0 \text{ true}) = P(Y \ge 36   H_0)$                         | M1               |
|        | $z = \frac{35.5 - 24}{\sqrt{16.8}} = 2.81$                                     | m1               |
|        | Required prob = $0.00248$                                                      | A1               |
|        | [Award m1A0 for incorrect continuity correction]                               | 711              |
| (      | ii) Y is B(80,0.6) which is approx N(48,19.2)                                  | B1               |
|        | $P(Accept H_0   H_1 true) = P(Y \le 35   H_0)$                                 | M1               |
|        | $z = \frac{35.5 - 48}{\sqrt{19.2}} = 2.85$                                     | m1               |
|        | Required prob = $0.00219$                                                      | A1               |
|        | [Award m1A0 for incorrect continuity correction]                               |                  |