

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Paper	Page
C1	1
C2	6
C3	11
C4	16
FP1	21
FP2	26
FP3	32

1.	(a)	(i)	Gradient of $BC = \underline{\text{increase in } y}$ increase in x	M1	
		(ii)	Gradient of $BC = -4$ (or equivalent) A correct method for finding the equation of BC using for BC		A1 ate's gradient
		(iii)	Equation of BC : $y-(-5)=-4(x-6)$ (or equivalent (f.t. candidate's gradient of BC) Equation of BC : $4x+y-19=0$ (convincing Use of $m_{AD} \times m_{BC} = -1$ A correct method for finding the equation of AD using for AD (M1) (to be awarded only if corresponding M1 is not awarded equation of AD : $y-4=\frac{1}{4}(x-8)$ (or equation of AD : (f.t. candidate's gradient of AD)	g) M1 g candida ded in p ivalent)	_
		Note:	Total mark for part (a) is 7 marks	<i>BC</i>)	711
	(<i>b</i>)	An atte $x = 4$, y	mpt to solve equations of BC and AD simultaneously $c = 3$ (convincing)	M1 (c.a.o.)	A1
	(c)	A corre $BD = $	ect method for finding the length of <i>BD</i> 68	M1	A1
	(<i>d</i>)	A corre <i>E</i> (0, 2)	ect method for finding E	M1	A1
2.	(a)	Numera	$\frac{7}{7} = \frac{(2 + 5\sqrt{7})(4 - \sqrt{7})}{(4 + \sqrt{7})(4 - \sqrt{7})}$ ator: $8 - 2\sqrt{7} + 20\sqrt{7} - 35$ inator: $16 - 7$		M1 A1 A1
		$\frac{2 + 5\sqrt{7}}{4 + \sqrt{7}}$ Special If M1	$\frac{7}{2} = -3 + 2\sqrt{7}$ (c.a.o.)	A1	
	(b)	$\sqrt{360} = \sqrt{2} \times (\sqrt{30} \times \sqrt{6})$	$\frac{\sqrt{5}}{5} = 5\sqrt{10}$ $\frac{\sqrt{8}}{2} = 2\sqrt{10}$	D.1	B1 B1 B1
		v30U –	$\sqrt{2} \times (\sqrt{5})^3 - \frac{\sqrt{30} \times \sqrt{8}}{\sqrt{6}} = -\sqrt{10} $ (c.a.o.)	B1	

3.	(a)	An attempt to substitute $x = 3$ in candidate's expression for $dy = m1$	M1
		Value of \underline{dy} at $P = 2$ (c.a.o.)	A1
			m1
		Equation of normal at P: $y - (-5) = -\frac{1}{2}(x - 3)$ (or equivalent)	A1
	(<i>b</i>)	An attempt to put candidate's expression for $\underline{dy} = 0$ dx	M1
		x-coordinate of $Q = 2.5$ (f.t. one error in candidate's expression for \underline{dy}) A1 \underline{dx}	
4.	(a)	$2(x-4)^2-40$ B1 B1 B	В1
	(b)	(B1 B1
5.	(a)	$(1+2x)^7 = 1 + 14x + 84x^2$ B1 B1 B1	

 $(1-4x)(1+2x)^7 = 1-4x+14x-56x^2+84x^2$ Constant term and terms in x Terms in x^2

(f.t. candidate's expression in (a)) $(1-4x)(1+2x)^7 = 1 + 10x + 28x^2$

B1

B1

B1

(c.a.o.)

(*b*)

An expression for $b^2 - 4ac$, with at least two of a, b, c correct 6. (a) (i) $b^2 - 4ac = (4k + 1)^2 - 4 \times (k + 1) \times (k - 5)$ **A**1 Putting $b^2 - 4ac = 0$ m1 $4k^2 + 8k + 7 = 0$ (convincing) **A1** An expression for $b^2 - 4ac$, with at least two of a, b, c correct (ii) (M1)(to be awarded only if corresponding M1 is not awarded in part (i)) $b^2 - 4ac = 64 - 112 (= -48)$ **A**1 $b^2 - 4ac \le 0 \Rightarrow$ no real roots **A**1 Note: Total mark for part (a) is 6 marks Finding critical values $x = -\frac{3}{4}$, x = 3(*b*) **B**1 A statement (mathematical or otherwise) to the effect that (or equivalent) $x \le -\frac{3}{4}$ or $3 \le x$ (f.t. candidate's derived critical values) **B**2 Deduct 1 mark for each of the following errors the use of strict inequalities the use of the word 'and' instead of the word 'or' $y + \delta y = 5(x + \delta x)^2 + 8(x + \delta x) - 11$ 7. (a) **B**1 Subtracting y from above to find δy M1 $\delta y = 10x\delta x + 5(\delta x)^2 + 8\delta x$ **A**1 Dividing by δx and letting $\delta x \to 0$ M1 $dy = limit \delta y = 10x + 8$ (c.a.o.) A1 $\frac{dy}{dx}$ $\delta x \to 0$ δx $\underline{dy} = 6 \times \underline{2} \times x^{-1/3} + 5 \times -2 \times x^{-3}$ (completely correct answer) (*b*) B2 (**If B2 not awarded**, award B1 for at least one correct non-zero term) 8. Attempting to find f(r) = 0 for some value of rM1 $f(-1) = 0 \implies x + 1$ is a factor **A**1 $f(x) = (x + 1)(8x^2 + ax + b)$ with one of a, b correct $f(x) = (x + 1)(8x^2 - 10x + 3)$ M1

f(x) = (x+1)(2x-1)(4x-3)

 $x = -1, \frac{1}{2}, \frac{3}{4}$

(f.t. only $8x^2 + 10x + 3$ in above line)

(f.t. for factors $2x \pm 1$, $4x \pm 3$)

A1

A1

9. (a)

Concave

down curve with y-coordinate of maximum = 4

x-coordinate of maximum = -3

B1

Both points of intersection with *x*-axis

B1

B1

(b)

Concave down curve with *y*-coordinate of maximum = 4 B1

x-coordinate of maximum = -1

Both points of intersection with *x*-axis

Note: A candidate who draws a curve with no changes to the original graph is awarded 0 marks (both parts)

- **10.** (*a*) (i) $(2x \times x) + (2x \times x) + (2x \times y) + (2x \times y) + (x \times y) + (x \times y)$ M1 $6xy + 4x^{2} = 108 \Rightarrow xy = 18 - \underline{2}x^{2}$ (convincing) $V = 2x \times x \times y = 2x(xy) \Rightarrow V = 36x - \underline{4}x^{3}$ (convincing) B1 **A**1

 - $\frac{\mathrm{d}V}{\mathrm{d}x} = 36 3 \times 4x^2$ (*b*) B1 Putting derived $\underline{dV} = 0$ M1x = 3, (-3)(f.t. candidate's <u>dV</u>) **A**1

 $\mathrm{d}x$ Stationary value of V at x = 3 is 72 (c.a.o) A1 A correct method for finding nature of the stationary point yielding a maximum value (for $0 \le x$) **B**1 C2

```
1.
                  0
                                              0.5
                  0.5
                                              0.470588235
                  1
                                              0.333333333
                  1.5
                                              0.186046511
                                              0.1
                                                                         (5 values correct)
                                                                                                     B2
                  (If B2 not awarded, award B1 for either 3 or 4 values correct)
         Correct formula with h = 0.5
                                                                                                     M1
         I \approx 0.5 \times \{0.5 + 0.1 + 2(0.470588235 + 0.3333333333 + 0.186046511)\}
         I \approx 2.579936152 \times 0.5 \div 2
         I ≈ 0.644984038
         I \approx 0.645
                                                                         (f.t. one slip)
                                                                                                     A1
         Special case for candidates who put h = 0.4
                                              0.5
                  0.4
                                              0.484496124
                  0.8
                                              0.398089172
                  1.2
                                              0.268240343
                  1.6
                                              0.164041994
                                              0.1
                                                                         (all values correct)
                                                                                                     B1
         Correct formula with h = 0.4
                                                                                                     M1
         I \approx 0.4 \times \{0.5 + 0.1 + 2(0.484496124 + 0.398089172 +
                                                                0.268240343 + 0.164041994)
                                                                                                               I \approx
         3.229735266 \times 0.4 \div 2
         I \approx 0.645947053
         I \approx 0.646
                                                                         (f.t. one slip)
                                                                                                     A1
         Note: Answer only with no working earns 0 marks
2.
                           Correct use of \tan \theta = \sin \theta
                                                                                                     M1
         (a)
                  (i)
                                                                (o.e.)
                                                       \cos \theta
                           Correct use of \cos^2 \theta = 1 - \sin^2 \theta
                                                                                                     M1
                           6(1-\sin^2\theta) + 5\sin\theta = 0 \Rightarrow 6\sin^2\theta - 5\sin\theta - 6 = 0
                                                                             (convincing)
                                                                                                     A1
                  (ii)
                            \theta + d),
```

An attempt to solve given quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta + b)(c \sin \theta)$

with
$$a \times c = 6$$
 and $b \times d = -6$ M1
 $6 \sin^2 \theta - 5 \sin \theta - 6 = 0 \Rightarrow (3 \sin \theta + 2)(2 \sin \theta - 3) = 0$
 $\Rightarrow \sin \theta = -\frac{2}{3}$ (c.a.o.) A1

$$\theta = 221.81^{\circ}, 318.19^{\circ}$$
 B1 B1

Note: Subtract (from final two marks) 1 mark for each additional root in range from $3 \sin \theta + 2 = 0$, ignore roots outside range. $\sin \theta = -$, f.t. for 2 marks, $\sin \theta = +$, f.t. for 1 mark

(b)
$$2x - 60^{\circ} = -38^{\circ}, 38^{\circ}, 322^{\circ}$$
 (one value) B1
 $x = 11^{\circ}, 49^{\circ}$ B1 B1

Subtract (from final two marks) 1 mark for each additional root in range, ignore roots outside range.

3. (a) Either:
$$(x+2)^2 = x^2 + (x-2)^2 - 2 \times x \times (x-2) \times \cos B\hat{A}C$$

Or: $\cos B\hat{A}C = \frac{x^2 + (x-2)^2 - (x+2)^2}{2 \times x \times (x-2)}$

(substituting the correct expressions in the correct places

in the cos rule) M1

Either:
$$\cos B\hat{A}C = \frac{x^2 + x^2 - 4x + 4 - x^2 - 4x - 4}{4x + 4 - x^2 - 4x - 4}$$
 (o.e.)

$$2 \times x \times (x-2)$$

Or:
$$\cos B\hat{A}C = \frac{x^2 + x^2 - 4x + 4 - x^2 - 4x - 4}{2x^2 - 4x}$$
 (o.e.) A1

$$\cos B\hat{A}C = \frac{x-8}{2x-4}$$
 (convincing) A1

(b) (i)
$$\frac{x-8}{2x-4} = -\frac{1}{2}$$
 M1
 $x = 5$

Either: (ii)

$$\frac{\sin ABC}{3} = \frac{\sin 120^{\circ}}{7}$$

(substituting the correct values in the correct places in the sin rule, f.t. candidate's value for x, provided x > 2) M1 $ABC = 21.8^{\circ}$

(f.t. candidate's value for x, provided x > 2)

Or:

$$3^2 = 5^2 + 7^2 - 2 \times 5 \times 7 \times \cos ABC$$

(substituting the correct values in the correct places in the cos rule, f.t. candidate's value for x, provided x > 2) M1 $ABC = 21.8^{\circ}$

> (f.t. candidate's value for x, provided x > 2) **A**1

4. (a)
$$S_n = a + [a+d] + \ldots + [a+(n-1)d]$$

(at least 3 terms, one at each end) **B**1

$$S_n = [a + (n-1)d] + [a + (n-2)d] + \dots + a$$

Either:

$$2S_n = [a + a + (n-1)d] + [a + a + (n-1)d] + \ldots + [a + a + (n-1)d]$$

(at least three terms, including those derived from the first pair and the last pair plus one other pair of terms)

Or:

$$2S_n = [a + a + (n-1)d] + \dots$$
 (*n* times)

$$2S_n = n[2a + (n-1)d]$$

$$2S_n = n[2a + (n-1)d]$$

$$S_n = n[2a + (n-1)d]$$

$$2$$
(convincing)
$$2$$

Either: (*b*)

$$\frac{10}{2}(2a+9d) = 115$$

$$S_{14} = 115 + 130$$

$$\frac{14}{2}(2a+13d) = 245$$
A1

An attempt to solve the candidate's equations simultaneously by eliminating one unknown

$$a = -2$$
, $d = 3$ (both values) (c.a.o.) A1

Or:

$$\frac{10}{2}(2a+9d) = 115$$
 B1

$$(a+10d) + (a+11d) + (a+12d) + (a+13d) = 130$$
 M1

4a + 46d = 130(seen or implied by later work) A1

An attempt to solve the candidate's equations simultaneously by eliminating one unknown M1

$$a = -2$$
, $d = 3$ (both values) (c.a.o.) A1

5. (a)
$$r = 0.8$$
 B1

$$S_{18} = \frac{100(1 - 0.8^{18})}{1 - 0.8}$$
 M1

$$S_{18} \approx 490.992 = 491$$
 (c.a.o.) A1

(b) (i)
$$ar = -20$$
 B1 $a = 64$

$$\frac{a}{1-r} = 64$$
 B1

An attempt to solve these equations simultaneously by eliminating a

$$16r^2 - 16r - 5 = 0 (convincing) A1$$

(ii)
$$r = -\frac{1}{4}$$
 (c.a.o.) B1

6. (a)
$$\frac{x^{5/4}}{5/4} + 2 \times \frac{x^{-4}}{-4} + c$$
 (-1 if no constant present)

(b) (i)
$$x^2 + 3 = 4x$$
 M1
An attempt to rewrite and solve quadratic equation
in x , either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b = 3$ m1
 $(x - 1)(x - 3) = 0 \Rightarrow x = 1, x = 3$ (both values, c.a.o) A1
Note: Answer only with no working earns 0 marks

(ii) Area of small triangle = 2
(any method, f.t. candidate's value for
$$x_A$$
) B1
Use of integration to find the area under the curve M1

$$\int_{1}^{1} x^2 dx = (1/3)x^3, \qquad \int_{1}^{1} 3 dx = 3x \text{ (correct integration) B1}$$

Correct method of substitution of candidate's limits $[(1/3)x^3 + 3x]_1^3 = (9+9) - (1/3+3) = 44/3$

Use of candidate's values for
$$x_A$$
 and x_B as limits and trying to find total area by adding area under curve to area of triangle

m1

Shaded area = 44/3 + 2 = 50/3 (c.a.o.) A1

7. (a) Let
$$p = \log_a x$$
, $q = \log_a y$
Then $x = a^p$, $y = a^q$ (the relationship between log and power) B1
 $xy = a^p \times a^q = a^{p+q}$ (the laws of indices) B1
 $\log_a xy = p + q$ (the relationship between log and power)
 $\log_a xy = p + q = \log_a x + \log_a y$ (convincing) B1

(b) Either:

$$(2-3x) \log_{10} 5 = \log_{10} 8$$

$$(taking logs on both sides and using the power law)$$

$$x = 2 \log_{10} 5 - \log_{10} 8$$

$$3 \log_{10} 5$$

$$x = 0.236$$
(f.t. one slip, see below)
A1

$$2-3x = \log_5 8$$
 (rewriting as a log equation) M1
 $x = \frac{2-\log_5 8}{3}$ A1

x = 0.236 (f.t. one slip, see below) A1

Note: an answer of x = -0.236 from $x = \frac{\log_{10} 8 - 2 \log_{10} 5}{3 \log_{10} 5}$ earns M1 A0 A1

an answer of x = 1.097 from $x = 2 \log_{10} 5 + \log_{10} 8 / 3 \log_{10} 5$

earns M1 A0 A1 an answer of x = 0.708 from $x = 2 log_{.10} 5 - log_{.10} 8 log_{.10} 5$

earns M1 A0 A1

Note: Answer only with no working shown earns 0 marks

		$\log_a 90x^2 - \log_a \left\lceil \frac{5}{5} \right\rceil = \log_a \left\lceil \frac{90x^2 \times x}{5} \right\rceil $ (subtraction law) B1	
		$\frac{90x^2 \times x}{5} = 12x^4$ (removing logs, f.t one incorrect term)	B1
		$x = 1.5 \tag{c.a.o.}$	B1
8.	(a)	A(-1,3)	B1
		A correct method for finding the radius M1 Radius = 5	A1
	(<i>b</i>)	(i) Showing that the coordinates of A do not satisfy the equation of L (f.t. candidate's coordinates for A) B1	
		(ii) An attempt to substitute $(9-x)$ for y in the equation of C_1 $x^2 - 5x + 6 = 0$ (or $2x^2 - 10x + 12 = 0$) A1 x = 2, x = 3	M1
		(correctly solving candidate's quadratic, both values) A1 Points of intersection are (2, 7), (3, 6) (c.a.o.) A1	
	(c)	Distance between centres of C_1 and $C_2 = 13$	D.
		(f.t. candidate's coordinates for <i>A</i>) Use of the fact that the shortest distance between the circles	B1

(power law)

M1

A1

B1

(c) $\frac{1}{2}\log_a 144x^8 = \log_a 12x^4$

(a) Substitution of values in area formula for triangle Area = ${}^{1}/_{2} \times 7 \cdot 2^{2} \times \sin 1 \cdot 1 = 23 \cdot 1 \text{ cm}^{2}$. 9. M1**A**1

= distance between centres – sum of the radii

Shortest distance between the circles

Let $B\hat{O}C = \phi$ radians $^{1}/_{2} \times 7 \cdot 2^{2} \times \phi = 19 \cdot 44$ $\phi = 0.75$ (o.e.) (*b*) M1**A**1 Length of arc $BC = 7.2 \times 0.75 = 5.4 \text{ cm}$ (f.t. candidate's value for ϕ) **A**1

=2(f.t. candidate's coordinates for A and radius for C_1 .) **C3**

1. (a) 1 1.945910149
1.5 2.238046572
2 2.63905733
2.5 3.073850053
3 3.496507561 (5 values correct) B2
(If B2 not awarded, award B1 for either 3 or 4 values correct)

Correct formula with
$$h = 0.5$$
 M1
 $I \approx 0.5 \times \{1.945910149 + 3.496507561$
 $3 + 4(2.238046572 + 3.073850053) + 2(2.63905733)\}$
 $I \approx 31.96811887 \times 0.5 \div 3$

Note: Answer only with no working earns 0 marks

 $I \approx 5.328019812$

 $I \approx 5.328$

(b)
$$\int_{1}^{3} \ln \sqrt{(x^3 + 6)} \, dx \approx 2.664$$
 (f.t. candidate's answer to (a)) B1

(f.t. one slip)

A1

2. (a)
$$4(\csc^2\theta - 1) - 8 = 2\csc^2\theta - 5\csc\theta$$
 (correct use of $\cot^2\theta = \csc^2\theta - 1$) M1

An attempt to collect terms, form and solve quadratic equation in cosec θ , either by using the quadratic formula or by getting the expression into the form $(a \csc \theta + b)(c \csc \theta + d)$, with $a \times c = \text{coefficient of } \csc^2 \theta$ and $b \times d = \text{candidate's constant}$

 $2 \operatorname{cosec}^{2} \theta + 5 \operatorname{cosec} \theta - 12 = 0 \Rightarrow (2 \operatorname{cosec} \theta - 3)(\operatorname{cosec} \theta + 4) = 0$ $\Rightarrow \operatorname{cosec} \theta = \frac{3}{2}, \operatorname{cosec} \theta = -4$

$$\Rightarrow \sin \theta = \frac{2}{3}, \sin \theta = -\frac{1}{4}$$
 (c.a.o.) A1

$$\theta = 41.81^{\circ}, 138.19^{\circ}$$
 B1
 $\theta = 194.48^{\circ}, 345.52^{\circ}$ B1 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

$$\sin\theta$$
 = +, -, f.t. for 3 marks, $\sin\theta$ = -, -, f.t. for 2 marks $\sin\theta$ = +, +, f.t. for 1 mark

(b) Correct use of
$$\sec \phi = 1 \quad \text{and } \tan \phi = \frac{\sin \phi}{\cos \phi}$$
 (o.e.) M1

$$\sin \phi = -\frac{1}{2}$$

$$\phi = 210^{\circ}, 330^{\circ}$$
(f.t. for $\sin \phi = -a$)
A1

3. (a) Use of product formula yielding
$$x^3 \times 2y \times \underline{dy} + 3x^2 \times y^2$$
 B1 B1 $\underline{dy} = -\frac{3x^2y^2}{2x^3y}$ (c.a.o.) B1

(b) (i) Putting candidate's expression for
$$\underline{dy} = 3$$
 and an attempt to \underline{dx} simplify M1

$$-\frac{3a^2b^2}{2a^3b} = 3 \Rightarrow b = -2a$$
 (convincing) A1

(ii) Substituting
$$a$$
 for x and $-2a$ for y in the equation for C M1 $a=2, b=-4$

4. (a) Differentiating $\ln t$ and $5t^4$ with respect to t, at least one correct M1 candidate's x-derivative = $\underline{1}$,

candidate's y-derivative =
$$20t^3$$
 (both values) A1
 $\frac{dy}{dx} = \frac{\text{candidate's y-derivative}}{\text{candidate's x-derivative}}$ (c.a.o.) A1
 $\frac{dy}{dx} = \frac{20t^4}{\text{candidate's x-derivative}}$

$$\frac{dx}{dx}$$

(b)
$$\frac{d}{dt} \left[\frac{dy}{dx} \right] = 80t^{3}$$
 (f.t. candidate's expression for \underline{dy}) B1
$$\frac{dx}{dt} \left[\frac{dy}{dx} \right] = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div \text{ candidate's } x\text{-derivative}$$
 M1
$$\frac{d^{2}y}{dx^{2}} = 80t^{4}$$
 (f.t. one slip) A1
$$\frac{d^{2}y}{dx^{2}} = 0.648 \Rightarrow t = 0.3$$
 (c.a.o.) A1

5. (a)
$$\frac{dy}{dx} = 5 \times (7 - 9x^2)^4 \times f(x),$$
 $(f(x) \neq 1)$ M1
 $\frac{dy}{dx} = -90x \times (7 - 9x^2)^4$ A1

(b)
$$\frac{dy}{dx} = \frac{6}{1 + (6x)^2}$$
 or $\frac{1}{1 + (6x)^2}$ or $\frac{6}{1 + 6x^2}$ M1
 $\frac{dy}{dx} = \frac{6}{1 + 36x^2}$ A1

(c)
$$\frac{dy}{dx} = e^{4x} \times m \sec^2 2x + \tan 2x \times k e^{4x}$$
 (m = 1, 2, k = 1, 4) M1

$$\frac{dy}{dx} = e^{4x} \times 2 \sec^2 2x + \tan 2x \times 4 e^{4x}$$
 (at least one correct term) B1

$$\frac{dy}{dx} = e^{4x} \times 2 \sec^2 2x + \tan 2x \times 4 e^{4x}$$
 (c.a.o.) A1

(d)
$$\frac{dy}{dx} = \frac{(2 + \cos x) \times m \cos x - (3 + \sin x) \times k \sin x}{(2 + \cos x)^2} \qquad (m = 1, -1 \ k = 1, -1) \quad M1$$

$$\frac{dy}{dx} = \frac{(2 + \cos x) \times (\cos x) - (3 + \sin x) \times (-\sin x)}{(2 + \cos x)^2}$$

$$\frac{dy}{dx} = \frac{2 \cos x + 3 \sin x + 1}{(2 + \cos x)^2}$$
A1

6. (a) (i)
$$\int \cos(3x + \pi/2) \, dx = k \times \sin(3x + \pi/2) + c$$

$$(k = 1, 3, \frac{1}{3}, -\frac{1}{3})$$
M1
$$\int \cos(3x + \pi/2) \, dx = \frac{1}{3} \times \sin(3x + \pi/2) + c$$
A1
(ii)
$$\int e^{3-4x} \, dx = k \times e^{3-4x} + c$$

$$\int e^{3-4x} \, dx = -\frac{1}{4} \times e^{3-4x} + c$$
A1
(iii)
$$\int \frac{7}{8x+5} \, dx = 7 \times k \times \ln|8x+5| + c$$

$$\int \frac{7}{8x+5} \, dx = 7 \times \frac{1}{8} \times \ln|8x+5| + c$$
A1
$$\int \frac{7}{8x+5} \, dx = 7 \times \frac{1}{8} \times \ln|8x+5| + c$$
A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int (2x-1)^{-4} dx = k \times (2x-1)^{-3} \qquad (k=1, 2, \frac{1}{2}) \qquad M1$$

$$\int_{1}^{2} 9 \times (2x-1)^{-4} dx = \left\lceil 9 \times \frac{1}{2} \times (2x-1)^{-3} \right\rceil$$

$$\left[-3 \right]_{1}^{2} \qquad A1$$

Correct method for substitution of limits in an expression of the form $m \times (2x-1)^{-3}$ M1

$$\int_{1}^{2} 9 \times (2x - 1)^{-4} dx = \underline{13} = 1.44$$
 (f.t. for $k = 1, 2$ only) A1

Note: Answer only with no working earns 0 marks

- 7. Choice of $a \neq -1$ and b = -a - 2M1(a) Correct verification that given equation is satisfied **A**1
 - Trying to solve either $x^2 10 \le 6$ or $x^2 10 \ge -6$ (b) M1 $x^2 - 10 \le 6 \Rightarrow x^2 \le 16$ $x^2 - 10 \ge -6 \Rightarrow x^2 \ge 4$ (both inequalities) **A**1 At least one of: $2 \le x \le 4$, $-4 \le x \le -2$ (f.t. one slip) **A**1 Required range: $2 \le x \le 4$ or $-4 \le x \le -2$ **A**1

Alternative mark scheme

 $(x^2 - 10)^2 \le 36$ (forming and trying to solve quadratic in x^2)M1 Critical values $x^2 = 4$ and $x^2 = 16$ **A**1 At least one of: $2 \le x \le 4$, $-4 \le x \le -2$ (f.t. one slip) **A**1 Required range: $2 \le x \le 4$ or $-4 \le x \le -2$ **A**1 (c.a.o.)

(c.a.o.)

B1

- 8. $x_0 = -1.5$ $x_1 = -1.666394263$ (x_1 correct, at least 5 places after the point) B1 $x_2 = -1.676625462$ $x_3 = -1.677198866$ $x_4 = -1.677230823 = -1.67723$ $(x_4 \text{ correct to 5 decimal places})$ **B**1 Let $f(x) = x^2 + e^x - 3$ An attempt to check values or signs of f(x) at x = -1.677225, x = -1.677235
 - $f(-1.677225) = -2.44 \times 10^{-5} \le 0, f(-1.677235) = 7.26 \times 10^{-6} > 0$ **A**1 Change of sign $\Rightarrow \alpha = -1.67723$ correct to five decimal places **A**1

9.

Both points of intersection with *x*-axis

10. (a) $y - 6 = e^{5 - x/2}$. B1

An attempt to express equation as a logarithmic equation and to

$$f^{-1}(x) = 2[5 - \ln(x - 6)]$$

(f.t. one slip in candidate's expression for
$$x$$
) A1

(b)
$$D(f^{-1}) = [7, \infty)$$
 B1 B1

11. (a) (i) $D(fg) = (0, \pi/4]$ B1

 $x = 2[5 - \ln(y - 6)]$

- (ii) $R(fg) = (-\infty, 0]$ B1 B1
- (b) (i) $fg(x) = -0.4 \Rightarrow \tan x = e^{-0.4}$ M1 x = 0.59 A1
 - (ii) Equation has solution only if $k \in R(fg)$. \therefore choose any $k \notin R(fg)$ (f.t. candidate's R(fg)) B1

C4

1. (a)
$$f(x) = A + B + C$$
 (correct form) M1
 $6 + x - 9x^2 = A(x + 2) + Bx(x + 2) + Cx^2$ (correct clearing of fractions and genuine attempt to find coefficients)

A = 3, C = -8, B = -1(all three coefficients correct) A2 If A2 not awarded, award A1 for at least one correct coefficient

(b) (i)
$$f'(x) = \frac{-6}{x^3} + \frac{1}{x^2} + \frac{8}{(x+2)^2}$$
 (o.e.)

(f.t. candidate's values for A, B, C)

(first term) **B**1

(at least one of last two terms) **B**1

(ii)
$$f'(2) = 0 \Rightarrow$$
 stationary value when $x = 2$ (c.a.o.) B1

2.
$$3x^{2} - 2x \times 2y \frac{dy}{dx} - 2y^{2} + 3y^{2} \frac{dy}{dx} = 0$$

$$\begin{cases} -2x \times 2y \frac{dy}{dx} - 2y^{2} \end{cases}$$

$$\begin{cases} 3x^{2}, 3y^{2} \frac{dy}{dx} \end{cases}$$
B1
$$\begin{cases} 3x^{2}, 3y^{2} \frac{dy}{dx} \end{cases}$$
B1

B1

Either
$$\frac{dy}{dx} = \frac{2y^2 - 3x^2}{3y^2 - 4xy}$$
 or $\frac{dy}{dx} = 2$ (o.e.) (c.a.o.) B1

Use of $grad_{normal} \times grad_{tangent} = -1$ M1Equation of normal: $y-1=-\underline{1}(x-2)$ [f.t. candidate's value for \underline{dy}] **A**1

3. (a)
$$8(2\cos^2\theta - 1) + 6 = \cos^2\theta + \cos\theta$$

(correct use of $\cos 2\theta = 2\cos^2 \theta - 1$) M1

An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta + b)(c \cos \theta + d)$,

with $a \times c$ = candidate's coefficient of $\cos^2 \theta$ and $b \times d$ = candidate's constant

$$15\cos^{2}\theta - \cos\theta - 2 = 0 \Rightarrow (5\cos\theta - 2)(3\cos\theta + 1) = 0$$

$$\Rightarrow \cos\theta = \frac{2}{5}, \quad \cos\theta = -\frac{1}{3}, \quad (c.a.o.) \quad A1$$

 $\theta = 66.42^{\circ}, 293.58^{\circ}$ **B**1 $\theta = 109.47^{\circ}, 250.53^{\circ}$ B1 B1

Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

 $\cos \theta = +, -, \text{ f.t. for 3 marks}, \cos \theta = -, -, \text{ f.t. for 2 marks}$ $\cos \theta = +, +, \text{ f.t. for } 1 \text{ mark}$

(*b*) R = 4**B**1

Correctly expanding $\cos (\theta + \alpha)$, correctly comparing coefficients and using either 4 $\cos \alpha = \sqrt{15}$ or $4 \sin \alpha = 1$ or $\tan \alpha = 1$ to find α

(f.t. candidate's value for *R*) M1

$$\alpha = 14.48^{\circ} \tag{c.a.o.}$$

 $\cos(\theta + 14.48^\circ) = \frac{3}{4} = 0.75$

(f.t. candidate's values for
$$R$$
, α , $0^{\circ} < \alpha < 90^{\circ}$) B1

 $\theta + 14.48^{\circ} = 41.41^{\circ}, 318.59^{\circ}$

(at least one value, f.t. candidate's values for R, α , $0^{\circ} < \alpha < 90^{\circ}$) B1

$$\theta = 26.93^{\circ}, 304.11^{\circ}$$
 (c.a.o.) B1

4.

Volume =
$$\pi \int_{\pi/6}^{\pi/2} \sin^2 2x \, dx$$
 B1

$$\sin^2 2x = \frac{(1 - \cos 4x)}{2}$$

$$\sin^2 2x = \underbrace{(1 - \cos 4x)}_{2}$$
B1

$$\int (a + b \cos 4x) \, dx = ax + \frac{1}{4} b \sin 4x, \qquad a \neq 0, b \neq 0$$

Correct substitution of candidate's limits in candidate's integrated expression

of form
$$mx + n \sin 4x$$
 $m \neq 0, n \neq 0$ M1

$$Volume = 1.985 (c.a.o.) A1$$

Note: Answer only with no working earns 0 marks

5. (a) (i)
$$(1+6x)^{1/3} = 1 + 2x - 4x^2$$
 $(1+2x)$ B1 $(-4x^2)$ B1

(ii)
$$|x| < \frac{1}{6} \text{ or } -\frac{1}{6} < x < \frac{1}{6}$$
 B1

(b)
$$2 + 4x - 8x^2 = 2x^2 - 15x \Rightarrow 10x^2 - 19x - 2 = 0$$
 M1

(An attempt to set up and use a correct method to solve quadratic using candidate's expansion for $(1 + 6x)^{1/3}$)

$$x = -0.1$$
 (f.t. only candidate's range for x in (a)) A1

6. (a) candidate's x-derivative = a candidate's y-derivative =
$$-\frac{b}{t^2}$$
 (at least one term correct) B1

$$\underline{dy} = \underline{candidate's \ y-derivative}$$
 M1

dx candidate's x-derivative

$$\frac{dy}{dx} = -\frac{b}{at^2}$$
 (c.a.o.) A1

Tangent at P:
$$y - \underline{b} = -\underline{b}(x - ap)$$
 (o.e.)

(f.t. candidate's expression for
$$\underline{dy}$$
) M1

$$ap^{2}y - abp = -bx + abp$$

$$ap^{2}y + bx - 2abp = 0.$$
 (convincing) A1

(b)
$$y = 0 \Rightarrow x = 2ap$$
 (o.e.) B1
 $x = 0 \Rightarrow y = 2b/p$ (o.e.) B1
Area of triangle $AOB = 2ab$ (c.a.o.) B1

(c)
$$p^2 - 2p + 2 = 0$$
 $(abp^2 - 2abp + 2ab = 0)$ B1

Attempting **either** to use the formula to solve the candidate's quadratic in *p* **or** to find the discriminant of the candidate's quadratic **or** to complete the square

M1 **Either** discriminant $\leq 0 \iff \text{no real roots} \implies \text{no such } P \text{ can exist}$

1)² + 1 = 0 (
$$\Rightarrow$$
 ($p - 1$)² = -1)) \Rightarrow no such P can exist (c.a.o.) A1

7. (a)
$$u = 3x - 1 \Rightarrow du = 3dx$$
 (o.e.) B1
 $dv = \cos 2x \, dx \Rightarrow v = \frac{1}{2} \sin 2x$ (o.e.) B1

$$\int (3x - 1) \cos 2x \, dx = (3x - 1) \times \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x \times 3dx$$
 M1

$$\int (3x - 1) \cos 2x \, dx = \frac{1}{2} (3x - 1) \sin 2x + \frac{3}{2} \cos 2x + c$$
 (c.a.o.) A1

(b)
$$\int \frac{x}{(2x+1)^3} dx = \int \frac{f(u)}{u^3} \times k \, du$$

$$(f(u) = pu + q, p \neq 0, q \neq 0 \text{ and } k = \frac{1}{2} \text{ or } 2)$$
 M1

$$\int \frac{x}{(2x+1)^3} dx = \int \frac{(u-1)}{(2x+1)^3} \times \frac{1}{2} \times \frac{du}{u^3} = 2$$

$$\int \frac{(au^{-2} + bu^{-3})}{-1} du = \frac{au^{-1}}{-1} + \frac{bu^{-2}}{-2} \qquad (a \neq 0, b \neq 0) \qquad B1$$

Either: Correctly inserting limits of 1, 3 in candidate's $cu^{-1} + du^{-2}$ $(c \ne 0, d \ne 0)$

Or: Correctly inserting limits of 0, 1 in candidate's $c(2x+1)^{-1} + d(2x+1)^{-2} \qquad (c \neq 0, d \neq 0) \qquad \text{m1}$

$$\int_{0}^{1} \frac{x}{(2x+1)^3} dx = \frac{1}{18}$$
 (c.a.o.) A1

Note: Answer only with no working earns 0 marks

8. (a)
$$\frac{dA}{dt} = k\sqrt{A}$$
 B1

(b)
$$\int \frac{dA}{\sqrt{A}} = \int k \, dt$$

$$\frac{A^{1/2}}{\sqrt{2}} = kt + c$$
A1

Substituting 64 for A and 3 for t and 196 for A and 5.5 for t in candidate's derived equation m1

16 = 3k + c, 28 = 5.5k + c (both equations) (c.a.o.)

Attempting to solve candidate's derived simultaneous linear equations in k and c m1

$$A = (2.4t + 0.8)^2$$
 (o.e.) A1

9. (a)
$$AB = 8i - 4j + 12k$$

(b)
$$\mathbf{OC} = -\mathbf{i} + 3\mathbf{j} - 7\mathbf{k} + \frac{3}{4}(8\mathbf{i} - 4\mathbf{j} + 12\mathbf{k})$$
 (o.e.) M1
 $\mathbf{OC} = 5\mathbf{i} + 2\mathbf{k}$ A1

(c) Use of
$$\mathbf{OA} + \mu(-4\mathbf{i} + \mathbf{j} + 3\mathbf{k})$$
 on r.h.s. M1
 $\mathbf{r} = -\mathbf{i} + 3\mathbf{j} - 7\mathbf{k} + \mu(-4\mathbf{i} + \mathbf{j} + 3\mathbf{k})$ (all correct) A1

(ii)
$$-1 + \lambda \times (-4) = 7$$

(an equation in λ from one set of coefficients) M1

$$\lambda = -2$$
 A1

$$1 + (-2) \times 1 = -1$$

$$11 + (-2) \times 3 = 5$$
 (both verifications) A1

An attempt to evaluate $\mathbf{AB} \cdot (-4\mathbf{i} + \mathbf{j} + 3\mathbf{k})$ M1

AB.
$$(-4\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = 0$$
 (convincing)

B lies on L, AB is perpendicular to L and thus B is the foot of the perpendicular from A to L (c.a.o.) A1

10.

Assume that there is a real value of
$$x$$
 such that
$$(5x-3)^2 + 1 < (3x-1)^2.$$

$$25x^2 - 30x + 9 + 1 < 9x^2 - 6x + 1 \Rightarrow 16x^2 - 24x + 9 < 0$$

$$(4x-3)^2 < 0$$
B1
This contradicts the fact that x is real and thus $(5x-3)^2 + 1 \ge (3x-1)^2$. B1

FP1

Ques	Solution	Mark	Notes
1	$S_n = \sum_{r=1}^{n} (2r - 1)^2 = \sum_{r=1}^{n} 4r^2 - \sum_{r=1}^{n} 4r + \sum_{r=1}^{n} 1$	M1A1	M1A0 for 2 correct terms
	$= \frac{4n(n+1)(2n+1)}{6} - \frac{4n(n+1)}{2} + n$	A1A1	Award A1 for 2 correct
	$= \frac{n}{6} \left(8n^2 + 12n + 4 - 12n - 12 + 6 \right)$	A1	FT line above if at least 2 terms present
	$=\frac{4n^3}{3}-\frac{n}{3}$ cao	A1	Penalise 1 mark if <i>n</i> used as dummy variable in summations
2(a)	EITHER $\frac{1}{w} = \frac{1}{1-i} + \frac{1}{1+2i}$		
	$w = 1 - i + 1 + 2i$ $= \frac{1 + 2i + 1 - i}{(1 - i)(1 + 2i)}$	M1A1	
	$=\frac{2+i}{3+i}$	A1	
	$w = \frac{3+i}{2+i} \times \frac{2-i}{2-i}$	M1	
	$=\frac{7-i}{5}$	A1A1	1 each for num and denom
	OR $\frac{1}{1-i} = \frac{1+i}{1-i^2} = \frac{1+i}{2}$	M1A1	
	$\frac{1}{1+2i} = \frac{1-2i}{1-4i^2} = \frac{1-2i}{5}$	A1	
	$1+2i - 1-4i^{2} - 5$ $\frac{1}{w} = \frac{5+5i+2-4i}{10} = \frac{7+i}{10}$	A1	
	$w = \frac{10}{7 + i} \times \frac{7 - i}{7 - i}$	M1	
(b)	$=\frac{7-i}{5}$	A1	1 each for num and denom
	₂ /50 —	B1	
	$Mod(w) = \frac{\sqrt{50}}{5} (\sqrt{2})$		FT on their w Accept 351.9° or 6.14
	$Arg(w) = -0.142 (-8.13^{\circ})$	B1	Do not FT arg if in 1 st quadrant

3(a)	$\alpha + \beta + \gamma = 2$, $\beta \gamma + \gamma \alpha + \alpha \beta = 2$, $\alpha \beta \gamma = -1$	B1	
	$\frac{\beta \gamma}{\alpha} + \frac{\gamma \alpha}{\beta} + \frac{\alpha \beta}{\gamma} = \frac{\beta^2 \gamma^2 + \gamma^2 \alpha^2 + \alpha^2 \beta^2}{\alpha \beta \gamma}$	M1	
		A1	
	$=\frac{(\beta\gamma+\gamma\alpha+\alpha\beta)^2-2\alpha\beta\gamma(\alpha+\beta+\gamma)}{\alpha\beta\gamma}$		
	$= \frac{(2)^2 - 2 \times (-1) \times 2}{-1} = -8$	A1	Convincing
(b)	Consider -1		
	$\frac{\gamma \alpha}{\beta} \times \frac{\alpha \beta}{\gamma} + \frac{\alpha \beta}{\gamma} \times \frac{\beta \gamma}{\alpha} + \frac{\beta \gamma}{\alpha} \times \frac{\gamma \alpha}{\beta}$	M1	
	$\begin{vmatrix} \beta & \gamma & \gamma & \alpha & \alpha & \beta \\ = \alpha^2 + \beta^2 + \gamma^2 & & & \end{vmatrix}$	A1	
	$= (\alpha + \beta + \gamma)^{2} - 2(\beta \gamma + \gamma \alpha + \alpha \beta)$	A1 A1	
	$= (\alpha + \beta + \gamma) - 2(\beta \gamma + \gamma \alpha + \alpha \beta)$ $= 4 - 2 \times 2 = 0$	A1	
	Consider		
	$\frac{\beta \gamma}{\alpha} \times \frac{\gamma \alpha}{\beta} \times \frac{\alpha \beta}{\gamma} = \alpha \beta \gamma = -1$	M1A1	
	$\begin{array}{ccc} \alpha & \beta & \gamma \\ \text{The required equation is} \end{array}$		
	$x^3 + 8x^2 + 1 = 0$	B1	FT their coefficients

4(a)	$\begin{bmatrix} 0 & -1 & 0 \end{bmatrix}$		
- (u)	Rotation matrix = $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Ref matrix in $y = x = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	$\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$	M1	
	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
(b)	$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ Fixed points satisfy		
	$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	M1	
	x = x + 1, $(y = -y + 2)These equations are not consistent so there are no fixed points.$	A1 A1	Accept equivalent reason
5	Putting $n = 1$, the formula gives 6 which is divisible by 6 so the result is true for $n = 1$ Assume formula is true for $n = k$, ie	B1	
	$7^k - 1$ is divisible by 6 or $7^k = 6N + 1$	M1	
	Consider, for $n = k + 1$, $7^{k+1} - 1 = 7.7^k - 1$	M1	
	7 - 7.7 = 7.6N + 1 - 1	A1	
	= 42N + 6	A1	
	This is divisible by 6 therefore true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction.	A1	

6(a)(i)	$Det(\mathbf{A}) = 7 - 4\lambda + \lambda(5\lambda - 14) + 3(8 - 5)$	M1	
	$=5\lambda^2-18\;\lambda+16$	A1	
(ii)	Putting $\lambda = 2$, det = $20 - 36 + 16 = 0$	B 1	
	So A is singular.		
	Putting $det(\mathbf{A}) = 0$, product of roots is 16/5		
	So the other root is 8/5	B1	
(b)(i)	x + 2y + 3z = 2		
	2x + y + 2z = 1		
	5x + 4y + 7z = 4		
	·		
	Attempting to use row operations,	M1	
	x + 2y + 3z = 2		
	3y + 4z = 3	A1	
	6y + 8z = 6	A1	
	Since the 3 rd equation is twice the 2 nd		
	equation, it follows that the equations are		Or because the next step gives a
	consistent.	A1	row of zeroes
		1	2011 32 233 33
(ii)	Let $z = \alpha$	M1	
()		M1	
	$y = 1 - \frac{4}{3}\alpha$	A1	
	$x = -\frac{1}{3}\alpha$	A1	
	3		
	(or equivalent)		
(.)(*)	$\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 5 & 4 & 7 \end{bmatrix}$		
(c)(i)	$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$		
	5 4 7		
	1		
	Cofactor matrix = $\begin{bmatrix} 3 & -9 & 3 \\ 5 & -8 & 1 \end{bmatrix}$ si		
	Cofactor matrix = $\begin{bmatrix} 5 & -8 & 1 \end{bmatrix}$ si	M1A1	Award M1 if at least 5 correct
	$\begin{vmatrix} -2 & 5 & -1 \end{vmatrix}$		elements
	Adjugate matrix = $\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$	A 4	
	Adjugate matrix = $\begin{vmatrix} -9 & -8 & 5 \end{vmatrix}$	A1	No FT from incorrect cofactor
	3 1 -1		matrix
(#)		D1	
(ii)	Determinant = 3	B1	
	$\begin{bmatrix} 3 & 5 & -2 \end{bmatrix}$	B 1	ET from in compact a divisate
	Inverse matrix = $\frac{1}{2} \left -9 - 8 \right $	DI	FT from incorrect adjugate
	Determinant = 3 Inverse matrix = $\frac{1}{3}\begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix}$		
(iii)			
(111)	x 3 5 $-2 2 $	M1	ET from inverse metrix
	$ y = \frac{1}{-1} -9 -8 5 1$	IVII	FT from inverse matrix
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 & 5 & -2 \\ -9 & -8 & 5 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$		
		A1	
		AI	

7	Taking logs, $\ln f(x) = \ln \sqrt{1 + \sin x} - \ln(1 + \tan x)^{2}$ $= \frac{1}{2} \ln(1 + \sin x) - 2\ln(1 + \tan x)$ Differentiating, $\frac{f'(x)}{f(x)} = \frac{\cos x}{2(1 + \sin x)} - \frac{2\sec^{2} x}{(1 + \tan x)}$ Putting $x = \pi/4$, $f'(\pi/4) = -0.586 \text{ cao}$	M1A1 A1 B3 M1 A2	B1 for each correct term
8(a) (b)	$u+iv = (x+iy)^{2}$ $= x^{2} - y^{2} + 2ixy$ Equating real and imaginary parts, $u = x^{2} - y^{2}$ $v = 2xy$ Substituting for y, $u = x^{2} - (2x^{2} + 1) = -1 - x^{2}$ $v^{2} = 4x^{2}(2x^{2} + 1)$ Eliminating x, $x^{2} = -(u+1)$ So that $v^{2} = 4(u+1)(2u+1) \text{ cao}$	M1 A1 M1 A1 M1 A1 A1 A1 A1	FT their expressions from (a)

FP2

Ques	Solution	Mark	Notes
1	$u = x^2 \Longrightarrow \mathrm{d}u = 2x\mathrm{d}x,$	B1	
	$[1,2] \rightarrow [1,4]$	B1	
	$I = \frac{1}{2} \int_{1}^{4} \frac{\mathrm{d}u}{\sqrt{25 - u^2}}$	M1	
	$=\frac{1}{2}\left[\sin^{-1}(\frac{u}{5})\right]_1^4$	A1	
	= 0.363 cao	A1	
2(a)	Substituting $t = \tan(\theta/2)$ $\frac{2t}{1+t^2} + \frac{3(1-t^2)}{1+t^2} = 2$ $2t + 3 - 3t^2 = 2 + 2t^2$	M1A1	
	$5t^2 - 2t - 1 = 0$	A1	Convincing.
(b)	$t = \frac{2 \pm \sqrt{24}}{10} = 0.68989, -0.28989$	M1A1	
	$t = 0.68989$ giving $\theta/2 = 0.6039$	B1	FT their roots from (a)
	The general solution is $\theta = 1.21 + 2n\pi$	B1 B1	Accept 2.859
	$t = -0.28989$ giving $\theta/2 = -0.2821$ The general solution is $\theta = -0.564 + 2n\pi$	B1	Accept $5.72 + 2n\pi$

3(a)	$-1 = \cos \pi + is$	$in\pi$	B1	
	$\sqrt[4]{-1} = \cos \pi/4 + i \sin \pi/4 = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}$			
	Root2 = $\cos 3\pi/4 + i \sin 3\pi/4 = -\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}$			
	$Root3 = \cos 5\pi/4 + i \sin 3\pi$	$n 5\pi/4 = -\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}}$	A1	Special case: Award 2/6 if they misread –1 as 1.
	$Root4 = \cos 7\pi/4 + is$		A1	
	×	×		
(b)(i)			B1	FT their roots if possible
	×	×		
(ii)			B1	
	Length of side = $\frac{2}{\sqrt{2}}$		B1	
	Area of square = 2			

<u> </u>			
4(a)	$f'(x) = \frac{2(x-1) - (2x+3)}{(x-1)^2}$	M1	
	$=-\frac{5}{(x-1)^2}$	A1	
	This is negative for all $x > 1$ therefore f is strictly decreasing.	A1	
(b)(i)	decreasing.		
(b)(1)	f(4) = 11/3, f(5) = 13/4 $f(S) = [13/4, 11/3]$	M1 A1	A0 if wrong way around but penalise only once.
(ii)	EITHER	24141	penanse only once.
	$y = \frac{2x+3}{x-1} \Rightarrow x = \frac{y+3}{y-2}$	M1A1	
	$f^{-1}(4) = 7/2, f^{-1}(5) = 8/3$	A1	
	$f^{-1}(S) = [8/3,7/2]$	A1	A0 if wrong way around.
	OR		
	$\frac{2x+3}{x-1} = 4 \rightarrow x = \frac{7}{2}$	M1A1	M1A1 for the first and then A1 for the second.
	$\frac{2x+3}{x-1} = 5 \to x = \frac{8}{3}$	A1	for the second.
	λ 1 β		A0 if wrong way around.
	$f^{-1}(S) = [8/3,7/2]$	A1	At it wrong way around.
5(a)(i)	Completing the square,		
	$(x-2)^2 + 2(y+1)^2 = 4$	M1A1	
(**)	The centre is therefore $(2, -1)$	A1	
(ii)	In standard form, the equation is		
	$\frac{(x-2)^2}{4} + \frac{(y+1)^2}{2} = 1 \text{ so } a = 2, b = \sqrt{2} \text{ si}$	B1	FT their equation in (ii), (iii) and (iv)
	$e = \sqrt{\frac{4-2}{4}} = \frac{1}{\sqrt{2}}$	M1A1	, ,
(:::)	$c = \sqrt{4} - \sqrt{2}$		
(iii)	The foci are $(2+\sqrt{2},-1)$ and $(2-\sqrt{2},-1)$	B1B1	
(iv)	The equations of the directrices are $x = 2 \pm 2\sqrt{2}$	B 1	
(b)(i)	EITHER	3.54	
	Putting $x = 0$, $(y + 1)^2 = 0$	M1 A1	
	This has a repeated root, hence $x = 0$ is a tangent OR	AI	
	Semi-major axis = $2 = x$ -coordinate of centre	M1	
(ii)	This equality shows that $x = 0$ is a tangent	A1 M1	
()	Substituting $y = mx$, $x^2(1+2m^2) - x(4-4m) + 2 = 0$	A1	
	Use of the condition for tangency, ie $b^2 = 4ac$	M1	
	16(1-m) ² = 8(1+2m ²)	A1	
	$2 - 4m + 2m^2 = 1 + 2m^2 \implies m = \frac{1}{4}$	A1	

	T		<u> </u>
6(a)	Let		
	$\frac{4x^2 - 2x + 9}{x(x^2 + 3)} \equiv \frac{A}{x} + \frac{Bx + C}{x^2 + 3}$		
	$= \frac{A(x^2+3) + x(Bx+C)}{x(x^2+3)} $ (oe)	M1	
	x = 0 gives A = 3	A1	
	Coeff of x^2 gives $A + B = 4$, $B = 1$	A1	
(b)	Coeff of x gives $C = -2$	A1	
(b)	$\int_{1}^{3} \frac{4x^{2} - 2x + 9}{x(x^{2} + 3)} dx = \int_{1}^{3} \left(\frac{3}{x} + \frac{x}{x^{2} + 3} - \frac{2}{x^{2} + 3} \right) dx$	M1	
	$\int_{1}^{3} x(x^{2}+3) dx - \int_{1}^{3} (x^{2}+3) dx + \int_{1}^{3} (x^{2}+3) dx$		
	$= \left[3 \ln x + \frac{1}{2} \ln(x^2 + 3) - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right) \right]^3$	В3	B1 each term
	[(40)]		
	$= 3\ln 3 + \frac{1}{2}\ln 12 - \frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{3}{\sqrt{3}}\right)$		
	_	A1	
	$-3\ln 1 - \frac{1}{2}\ln 4 + \frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$		
	= 3.24 cao	A1	
	- 3.24 Ca0		

			T
7 (a)	Consider $(2(-x)^2 + 1)^2$	M1A1	
	$f(-x) = \frac{(2(-x)^2 + 1)^2}{(-x)^3} = -f(x)$	A1	
	Therefore f is odd	AI	
(b)	EITHER		
	Differentiating, $2(2x^2 + 1) 4x x^3 - 3x^2(2x^2 + 1)^2$		
	$f'(x) = \frac{2(2x^2+1) \cdot 4x \cdot x^3 - 3x^2(2x^2+1)^2}{x^6}$	M1A1	
	At a stationary point, putting $f'(x) = 0$,		Condone the cancellation of $x^2(2x^2+1)$
	$8x^2 = 3(2x^2 + 1)$	m1	x (2x 11)
	$x = \pm \sqrt{\frac{3}{2}}$	A1	
	OR A 1	M1	
	Consider $f(x) = 4x + \frac{4}{x} + \frac{1}{x^3}$	IVII	
	Consider $f(x) = 4x + \frac{4}{x} + \frac{1}{x^3}$ $f'(x) = 4 - \frac{4}{x^2} - \frac{3}{x^4}$	A1	
	At a stationary point, putting $f'(x) = 0$,	1	
	$4x^4 - 4x^2 - 3 = 0$	m1	
	$x = \pm \sqrt{\frac{3}{2}}$	A1	
(c)			
	The asymptotes are $x = 0$	B1 B1	
	y = 4x	Di	
(d)			
(u)		G1	
		GI	
	x		
		G1	
	'		

8	EITHER	
	Consider	
	$\cos 5\theta + i\sin 5\theta = (\cos \theta + i\sin \theta)^5$	M1
	Expanding and taking real parts,	
	$\cos 5\theta = \cos^5 \theta + 10\cos^3 \theta (i\sin \theta)^2$	m1A1
	$+5\cos\theta(i\sin\theta)^4$	
	$=\cos^5\theta - 10\cos^3\theta(1-\cos^2\theta) + 5\cos\theta(1-\cos^2\theta)^2$	A1
	$=\cos^5\theta - 10\cos^3\theta + 10\cos^5\theta + 5\cos\theta$	A1
	$-10\cos^3\theta + 5\cos^5\theta$	
	$= 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	A1
	OR Let $z = \cos \theta + i\sin \theta$ So that $z + \frac{1}{z} = 2\cos \theta$ and $z^n + \frac{1}{z^n} = 2\cos n\theta$	M1 A1
	Consider $ \left(z + \frac{1}{z}\right)^5 = z^5 + 5z^3 + 10z + \frac{10}{z} + \frac{5}{z^3} + \frac{1}{z^5} $	A1
	$32\cos^5\theta = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$ $\cos 5\theta = 16\cos^5\theta - 5\cos 3\theta - 10\cos \theta$ $= 16\cos^5\theta - 5(4\cos^3\theta - 3\cos\theta) - 10\cos\theta$	A1 A1 A1
	$= 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	122

FP3

Ques	Solution	Mark	Notes
1	Using $\cosh 2x = 2\cosh^2 x - 1$, the eqn becomes	M1	
	$2\cosh^2 x - 7\cosh x + 6 = 0$	A1	
	Solving the quadratic equation,	M1	
	cosh x = 2, 1.5	A1	
	The positive roots are therefore		
	$x = \cosh^{-1} 2 = 1.32$	A1	FT their roots
	and $x = \cosh^{-1}(1.5) = 0.96$	A1	
2(a)(i)	The Newton-Raphson iteration is		
	$x_{n+1} = x_n - \frac{(x_n^3 - a)}{3x_n^2}$	M1	
	$=\frac{2x_n^3+a}{3x_n^2}$	A1	Convincing
(ii)	$x_0 = 2$		
	$x_1 = 2.1666666667$	M1A1	
	$x_2 = 2.154503616$		
	$x_3 = 2.154434692$		
	$x_4 = 2.15443469$		
	$\sqrt[3]{10} = 2.1544$ correct to 4 decimal places.	A1	
(b)	1		
()	Consider		
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{a}{x^2} \right) = -\frac{2a}{x^3}$	M1A1	M0 if $a = 10$
		A1	
	$= -2 \text{ when } x = \sqrt[3]{a}$	711	
	The sequence diverges because this exceeds 1 in modulus.	A1	
3(a)	$f'(x) = \frac{2e^x}{2e^x - 1}$	B1	
		D 1	
	$f''(x) = \frac{2e^{x}(2e^{x}-1) - 2e^{x}.2e^{x}}{(2e^{x}-1)^{2}}$	M1	
	$=\frac{-2e^x}{(2e^x-1)^2}$	A1	convincing
(b)	(
	$f'''(x) = \frac{-2e^{x}(2e^{x}-1)^{2} + 2e^{x}.2e^{x}2(2e^{x}-1)}{(2e^{x}-1)^{4}}$	M1A1	
	f(0) = 0, f'(0) = 2, f''(0) = -2, f'''(0) = 6	B2	Award B1 for 2 correct values
	The Maclaurin series is		
	$2x - x^2 + x^3 + \dots$	M1A1	FT on their values of $f^{(n)}(0)$

Solution the students, $3 + 2x - x^2 = 4 - (x - 1)^2$ so $I = \int_1^2 \sqrt{4 - (x - 1)^2} dx$ Put $x - 1 = 2\sin\theta$ $dx = 2\cos\theta d\theta$, $[1,2] \rightarrow [0,\pi/6]$ $I = \int_0^{\pi/6} \sqrt{4 - 4\sin^2\theta} \cdot 2.\cos\theta d\theta$ $dx = 2\cos\theta d\theta$ $= 4 \int_0^{\pi/6} \cos^2\theta d\theta$ $= 2 \int_0^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 2 \int_0^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 2 \int_0^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 1.91$ A1 $I_n = \left[x^n \cosh x\right]_0 - n \int_0^1 x^{n-1} \cosh x dx$ $= \cosh 1 - n \int_0^1 x^{n-1} \cosh x dx$ $= \cosh 1 - n \int_0^1 x^{n-1} \sinh x\right]_0 + n(n-1)I_{n-2}$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$ $= \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ $= 37 \cosh 1 - 28 \sinh 1 - 24 \cosh 1$ A1 M1A1 FT their I_0 if substituted here	4	Completing the squere		
$so I = \int_{1}^{2} \sqrt{4 - (x - 1)^{2}} dx$ Put $x - 1 = 2\sin\theta$ $dx = 2\cos\theta d\theta, [1,2] \rightarrow [0,\pi/6]$ $I = \int_{0}^{\pi/6} \sqrt{4 - 4\sin^{2}\theta} .2\cos\theta d\theta$ $= 4 \int_{0}^{\pi/6} \cos^{2}\theta d\theta$ $= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) d\theta$ A1 $= [x^{n} \cosh x], -n \int_{0}^{1} x^{n-1} \cosh x dx$ $= [x^{n} \cosh x], -n \int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$ A1 $= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$ A1 $= \cosh 1 - n \sinh 1 + n(n - 1)I_{n-2}$ $= \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12I_{2} \cosh 1 - 2 \sinh 1 + 2I_{0}$ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ A1 Allow $x - 1 = 2\cos\theta$ All Allow $x - 1 = 2\cos\theta$ All Allow $x - 1 = 2\cos\theta$	4	Completing the square, $3 + 2x - x^2 - 4 - (x - 1)^2$	M1A1	
$ \begin{array}{c} \Pr{\text{Put } x - 1 = 2\sin\theta} \\ \text{d}x = 2\cos\theta \text{d}\theta, [1,2] \to [0,\pi/6] \\ I = \int\limits_{0}^{\pi/6} \sqrt{4 - 4\sin^2\theta} \cdot 2\cos\theta \text{d}\theta \\ = 4 \int\limits_{0}^{\pi/6} \cos^2\theta \text{d}\theta \\ = 2 \int\limits_{0}^{\pi/6} (1 + \cos 2\theta) \text{d}\theta \\ = 2 \int\limits_{0}^{\pi/6} (1 + \cos 2\theta) \text{d}\theta \\ = 1.91 \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1} \\ = 1.91 \end{array} $, , ,	1741711	
$ \begin{array}{c} \Pr{\text{Put } x - 1 = 2\sin\theta} \\ \text{d}x = 2\cos\theta \text{d}\theta, [1,2] \to [0,\pi/6] \\ I = \int\limits_{0}^{\pi/6} \sqrt{4 - 4\sin^2\theta} \cdot 2\cos\theta \text{d}\theta \\ = 4 \int\limits_{0}^{\pi/6} \cos^2\theta \text{d}\theta \\ = 2 \int\limits_{0}^{\pi/6} (1 + \cos 2\theta) \text{d}\theta \\ = 2 \int\limits_{0}^{\pi/6} (1 + \cos 2\theta) \text{d}\theta \\ = 1.91 \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1} \\ = 1.91 \end{array} $		so $I = \int_{1}^{\infty} \sqrt{4 - (x - 1)^2} dx$		
$dx = 2\cos\theta d\theta, [1,2] \to [0,\pi/6]$ $I = \int_{0}^{\pi/6} \sqrt{4 - 4\sin^{2}\theta} \cdot 2\cos\theta d\theta$ $I = \int_{0}^{\pi/6} \sqrt{4 - 4\sin^{2}\theta} \cdot 2\cos\theta d\theta$ $= 4 \int_{0}^{\cos^{2}\theta} d\theta$ $= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 2 \left[\theta + \frac{\sin 2\theta}{2}\right]_{0}^{\pi/6}$ $= 1.91$ $A1$ $I_{n} = \left[x^{n} \cosh x\right]_{0}^{n} - \int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - \int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - \left[nx^{n-1} \sinh x\right]_{0}^{1} + n(n-1)I_{n-2}$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$ $I_{0} = \int_{0}^{1} \sinh x dx = \left[\cosh x\right]_{0}^{1} = \cosh 1 - 1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0})$ $= 13\cosh 1 - 28\sinh 1 + 24(\cosh 1 - 1)$ A1		1		
$I = \int_{0}^{\pi/6} \sqrt{4 - 4\sin^{2}\theta} \cdot 2\cos\theta d\theta \qquad m1$ $= 4 \int_{0}^{\pi/6} \cos^{2}\theta d\theta \qquad A1$ $= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) d\theta \qquad A1$ $= 2 \left[\theta + \frac{\sin 2\theta}{2}\right]_{0}^{\pi/6} \qquad A1$ $= 1.91 \qquad A1$ $I_{n} = \left[x^{n} \cosh x\right]_{0}^{n} - n \int_{0}^{1} x^{n-1} \cosh x dx \qquad M1A1$ $= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx \qquad A1$ $= \cosh 1 - \left[nx^{n-1} \sinh x\right]_{0}^{1} + n(n-1)I_{n-2} \qquad M1A1$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2} \qquad M1A1$ $I_{0} = \int_{0}^{1} \sinh x dx = \left[\cosh x\right]_{0}^{1} = \cosh 1 - 1 \qquad M1A1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2} \qquad M1$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0}) \qquad \text{Stage}$ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1) \qquad A1$				Allow $x-1=2\cos\theta$
$= 4 \int_{0}^{\pi/6} \cos^{2}\theta d\theta$ $= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 2 \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/6}$ $= 1.91$ A1 $I_{n} = \left[x^{n} \cosh x \right]_{0}^{n} - n \int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - \left[nx^{n-1} \sinh x \right]_{0}^{n} + n(n-1)I_{n-2}$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$ $I_{0} = \int_{0}^{1} \sinh x dx = \left[\cosh x \right]_{0}^{n} = \cosh 1 - 1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0})$ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ A1			AlAl	
$= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 2 \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/6}$ $= 1.91$ A1 $I_{n} = \left[x^{n} \cosh x \right]_{0}^{n} - n \int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$ A1 $= \cosh 1 - \left[nx^{n-1} \sinh x \right]_{0}^{n} + n(n-1)I_{n-2}$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$ $I_{0} = \int_{0}^{1} \sinh x dx = \left[\cosh x \right]_{0}^{n} = \cosh 1 - 1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0})$ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ A1 A1 A1 A1 A1 A1		0	m1	
$= 2 \int_{0}^{\pi/6} (1 + \cos 2\theta) d\theta$ $= 2 \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/6}$ $= 1.91$ A1 $I_{n} = \left[x^{n} \cosh x \right]_{0}^{n} - n \int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$ A1 $= \cosh 1 - \left[nx^{n-1} \sinh x \right]_{0}^{n} + n(n-1)I_{n-2}$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$ $I_{0} = \int_{0}^{1} \sinh x dx = \left[\cosh x \right]_{0}^{n} = \cosh 1 - 1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0})$ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ A1 A1 A1 A1 A1 A1		$=4\int_{0}^{\pi/6}\cos^2\theta\mathrm{d}\theta$	A1	
		$=2\int_{0}^{\pi/6} (1+\cos 2\theta) \mathrm{d}\theta$	A1	
		$=2\left[\theta+\frac{\sin 2\theta}{2}\right]^{\pi/6}$	A1	
$I_{n} = \left[x^{n} \cosh x\right]_{0}^{n} - n\int_{0}^{n} x^{n-1} \cosh x dx$ $= \cosh 1 - n\int_{0}^{1} x^{n-1} \cosh x dx$ $= \cosh 1 - \left[nx^{n-1} \sinh x\right]_{0}^{n} + n(n-1)I_{n-2}$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$ $I_{0} = \int_{0}^{1} \sinh x dx = \left[\cosh x\right]_{0}^{n} = \cosh 1 - 1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0})$ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ $M1A1$ $M1A1 \text{ M1A1 for evaluating } I_{0} \text{ at any stage}$ $M1$ $A1$ $A1$ $A1$			A1	
$= \cosh 1 - \left[nx^{n-1} \sinh x \right]_{0}^{0} + n(n-1)I_{n-2}$ $= \cosh 1 - n \sinh 1 + n(n-1)I_{n-2}$ $I_{0} = \int_{0}^{1} \sinh x dx = \left[\cosh x \right]_{0}^{0} = \cosh 1 - 1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0})$ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ $= \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1)$ M1A1 M1A1 for evaluating I_{0} at any stage M1 A1 FT their I_{0} if substituted here	5(a)	$I_n = \left[x^n \cosh x \right]_0^1 - n \int_0^1 x^{n-1} \cosh x dx$	M1A1	
(b) $ I_0 = \int_0^1 \sinh x dx = [\cosh x]_0^1 = \cosh 1 - 1 $ $I_0 = \int_0^1 \sinh x dx = [\cosh x]_0^1 = \cosh 1 - 1 $ $I_4 = \cosh 1 - 4 \sinh 1 + 12I_2 $ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_0) $ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1) $		$= \cosh 1 - n \int_{0}^{1} x^{n-1} \cosh x dx$	A1	
(b) $ I_0 = \int_0^1 \sinh x dx = [\cosh x]_0^1 = \cosh 1 - 1 $ $I_0 = \int_0^1 \sinh x dx = [\cosh x]_0^1 = \cosh 1 - 1 $ $I_4 = \cosh 1 - 4 \sinh 1 + 12I_2 $ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_0) $ $= 13 \cosh 1 - 28 \sinh 1 + 24 (\cosh 1 - 1) $		$= \cosh 1 - [nx^{n-1} \sinh x]_{n}^{1} + n(n-1)I$	M1A1	
(b) $I_{0} = \int_{0}^{1} \sinh x dx = [\cosh x]_{0}^{1} = \cosh 1 - 1$ $I_{0} = \int_{0}^{1} \sinh x dx = [\cosh x]_{0}^{1} = \cosh 1 - 1$ $I_{4} = \cosh 1 - 4 \sinh 1 + 12I_{2}$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_{0})$ $= 13 \cosh 1 - 28 \sinh 1 + 24(\cosh 1 - 1)$ A1 M1A1 for evaluating I_{0} at any stage M1 A1 FT their I_{0} if substituted here				
$I_4 = \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_0)$ $= 13 \cosh 1 - 28 \sinh 1 + 24(\cosh 1 - 1)$ $= 13 \cosh 1 - 28 \sinh 1 + 24(\cosh 1 - 1)$ $A1$ Stage FT their I_0 if substituted here	(b)	$= \cos(1 + i \sin(1 + i i i i))))))))))))$		
$I_4 = \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_0)$ $= 13 \cosh 1 - 28 \sinh 1 + 24(\cosh 1 - 1)$ $= 13 \cosh 1 - 28 \sinh 1 + 24(\cosh 1 - 1)$ $A1$ Stage FT their I_0 if substituted here		1		
$I_4 = \cosh 1 - 4 \sinh 1 + 12I_2$ $= \cosh 1 - 4 \sinh 1 + 12(\cosh 1 - 2 \sinh 1 + 2I_0)$ $= 13 \cosh 1 - 28 \sinh 1 + 24(\cosh 1 - 1)$ $A1$ FT their I_0 if substituted here		$I_0 = \int \sinh x dx = [\cosh x]_0^1 = \cosh 1 - 1$	M1A1	M1A1 for evaluating I_0 at any
$= \cosh 1 - 4\sinh 1 + 12(\cosh 1 - 2\sinh 1 + 2I_0)$ $= 13\cosh 1 - 28\sinh 1 + 24(\cosh 1 - 1)$ A1 FT their I_0 if substituted here			3.41	stage
$= \frac{2 + \frac{1}{2} + \frac{1}{2$				ET their I if substituted by
$oxed{1}$			111	I_0 if substituted here
$= 3/\cosh 1 - 28 \sinh 1 - 24 \text{cao}$		· · · · · · · · · · · · · · · · · · ·	A1	
		$= 3/\cosh 1 - 28\sinh 1 - 24 \text{cao}$		

6(a)	Consider		
0(a)	$x = r\cos\theta$	M1	
	$=\sin^2\theta\cos\theta$	A1	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\sin\theta\cos^2\theta - \sin^3\theta$	M1A1	
	The tangent is perpendicular to the initial line		
	where $\frac{dx}{d\theta} = 2\sin\theta\cos^2\theta - \sin^3\theta = 0$	M1	Do not penalise the removal of the factor $\sin \theta$
	$\tan^2\theta = 2$	A1	the factor sino
	$\theta = \tan^{-1}\sqrt{2} = 0.955$	A1 A1	
	r = 0.667	711	
(b)	Area = $\frac{1}{2} \int r^2 d\theta$	M1	
	$=\frac{1}{2}\int_{0}^{\pi/2}(1-\sin\theta)^{2}\mathrm{d}\theta$	A1	
	$= \frac{1}{2} \int_{0}^{\pi/2} (1 - 2\sin\theta + \sin^2\theta) d\theta$	A1	
	$= \frac{1}{4} \int_{0}^{\pi/2} (3 - 4\sin\theta - \cos 2\theta) d\theta$	A1	
	$= \frac{1}{4} \left[3\theta + 4\cos\theta - \frac{1}{2}\sin 2\theta \right]_0^{\pi/2}$	A1	
	$= \frac{3\pi - 8}{8} (0.178) \text{cao}$	A1	

7(a)(i)	$D(\operatorname{cosech} x) = D\left(\frac{1}{\sinh x}\right)$	M1	
	$= \frac{-1}{\sinh^2 x} \times \cosh x$	A1	
	$= -\operatorname{cosech}x \operatorname{coth}x$ $D(\operatorname{coth}x) = D\left(\frac{\cosh x}{\sinh x}\right)$	M1	
	$= \frac{\sinh x}{\sinh^2 x - \cosh^2 x}$ $= \frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x}$	A1	
(ii)	$\sinh^{2} x$ $= -\operatorname{cosech}^{2} x$ $D \ln(\operatorname{cosech} x + \coth x)$		
	$= \frac{-(\operatorname{cosech} x \operatorname{coth} x + \operatorname{cosech}^2 x)}{(\operatorname{cosech} x + \operatorname{coth} x)}$	M1	
	$= -\operatorname{cosech} x$	A1	convincing
(b)(i)	$L = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$	M1	
	$= \int_{1}^{e} \sqrt{1 + \left(\frac{1}{x}\right)^2} \mathrm{d}x$	A1	
(ii)	$= \int_{1}^{e} \frac{\sqrt{1+x^2}}{x} \mathrm{d}x$		
	Putting $x = \sinh u$, $dx = \cosh u du$, $[1,e] \rightarrow [\sinh^{-1} 1, \sinh^{-1} e]$ ($[\alpha,\beta]$)	B1B1	
	Arc length = $\int_{\alpha}^{\beta} \frac{\sqrt{1 + \sinh^2 u}}{\sinh u} \cdot \cosh u du$	M1	
	$=\int_{\alpha}^{\beta} \frac{\cosh^2 u}{\sinh u} du$	A1	
	$= \int_{\alpha}^{\beta} \frac{1 + \sinh^2 u}{\sinh u} du$	A1	
	$= \int_{0}^{\beta} (\operatorname{cosech} u + \sinh u) du$		
(iii)	$\stackrel{ullet}{lpha}$	M1A1	
	$= \left[-\ln(\operatorname{cosech} u + \operatorname{coth} u) + \operatorname{cosh} u \right]_{\alpha}^{\beta}$ $= 2.00$	A2	

GCE MATHS C1-C4 AND FP1-FP3 MS SUMMER 2013

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>

GCE MARKING SCHEME

MATHEMATICS - M1-M3 & S1-S3 AS/Advanced

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Paper	Page
M1	1
M2	9
M3	17
S1	23
S2	26
S3	29

Q Solution Mark Notes

1(a)

B1 (0, 20) to (8, 20) Or (18, 6) to (40, 6)

B1 (8, 20) to (18, 6)

B1 completely correct with all units and labels.

$$D = \frac{20 - 6}{18 - 8}$$

$$D = 1.4 \text{ ms}^{-2}$$

M1 any correct method

OR

Use of
$$v = u + at$$
, $v=6$, $u=20$, $t=10$

$$6 = 20 + 10a$$

$$a = -1.4 \text{ ms}^{-2}$$

Magnitude of acceleration =
$$1.4 \text{ ms}^{-2}$$

$$= (8 \times 20) + 0.5(20 + 6) \times 10 + (22 \times 6)$$

$$= 160 + 130 + 132$$

$$= 422 \text{ m}$$

Solution

Mark Notes

2(a)

N2L applied to lift and person

$$(M + 64)g - 7500 = (M+64) \times 0.425$$

 $M = 736$

dim correct equation, M1 forces opposing

A1 correct equation **A**1

2(b)

N2L applied to person

$$64g - R = 64a$$

 $R = 64 \times 9.8 - 64 \times 0.425$
 $R = \underline{600 \text{ N}}$

M1

64g and R opposing Dim correct equation correct equation **A**1

A1

3(a)	$v^2 = u^2 + 2as$, $v=0$, $a=(\pm)9.8$, $s=18.225$	M1	oe used
	$0 = u^2 - 2 \times 9.8 \times 18.225$	A 1	
	$u = \underline{18.9}$	A1	convincing

Mark Notes

3(b) Use of
$$s = ut + 0.5at^2$$
, $s = (\pm)2.8$, $a = (\pm)9.8$, $u = 18.9$ M1 oe $-2.8 = 18.9t + 0.5 \times (-9.8)t^2$ A1 $4.9t^2 - 18.9t - 2.8 = 0$ $7t^2 - 27t - 4 = 0$ m1 correct method for solving quad equ seen $t = 4s$ A1 cao

Solution

Mark

Notes

4

5

$$5g - T = 5a$$

M1 dim correct equation 5g and T opposing.

$$T = 5 \times 9.8 - 5 \times 1.61$$

 $T = 40.95 \text{ N}$

$$R = 9g = (88.2 \text{ N})$$

 $F = 9\mu g = (88.2\mu)$

N2L applied to A

M1 dim correct equation T and F opposing

$$T - F = 9a$$

$$T - 88.2\mu = 9 \times 1.61$$

$$T - 88.2\mu = 9 \times 1.61$$

$$\mu = 0.3$$

limiting friction = $9\mu g = 9 \times 0.6g = 5.4g$ 4(b) **B**1

Limiting friction > 5g

Particle will remain at rest

R1 oe

$$T = 5g = 49 \text{ N}$$

B1

5

$$R + 84 = 12g$$

$$R = 33.6$$

M1

A1 cao

$$12g \times 0.2 = 84(x - 0.8)$$

$$84x = 12g \times 0.2 + 84 \times 0.8$$

$$x = 1.08$$

M1 equation, no extra force

all forces, no extras

B1 any correct moment

5(b) When about to tilt about
$$C$$
, $R_D = 0$

Moments about C

$$Mg \times 0.8 = 12g \times 0.2$$

$$M = 3$$

M1 s

m1 equation, no extra force

Solution

Mark Notes

6.

$$2u + 5 \times 0 = 2 \times (-2) + 5 \times 3$$

 $u = 5.5$

M1 equation required, only 1 sign error.

A1 correct equation

6(b) Restitution 3 - (-2) = -e(0 - 5.5)

$$e = \frac{10}{11} = 0.909$$

M1 only 1 sign error

A1 ft u

A1

A1 cao

6(c) Impulse = change of momentum

$$I = 5(3-0)$$

 $I = 15 \text{ (Ns)}$

M1 for P or Q

A1 + required

6(d) v' = ev $v' = 0.25 \times 3$

$$v' = 0.25 \times 3$$

 $v' = 0.75 \text{ ms}^{-1}$

M1 used

A1 + required

•	`	
l	,	
•	_	

a 1	. •
Sol	ution
\sim	uuon

Mark Notes

$$X = 85 - 40 + 75 \cos \alpha$$

$$X = 85 - 40 + 75 \times 0.8$$

$$X = 105$$

$$Y = 60 - 75 \sin \alpha$$

 $Y = 60 - 75 \times 0.6$
 $Y = 15$

$$R = \sqrt{105^2 + 15^2}$$

$$R = 75\sqrt{2} = 106.066 \text{ N}$$

$$\theta = \tan^{-1} \left(\frac{15}{105} \right)$$

$$\theta = 8.13^{\circ}$$

7(b) N2L applied to particle
$$75\sqrt{2} = 5a$$

$$a = 15\sqrt{2} = \frac{3a}{21.21 \text{ ms}^{-2}}$$

M1 attempted

B1 any correct resolution

A1 all correct accept cos36.9

M1 attempted

A1 all correct, accept sin 36.9

M1

A1 cao

M1 allow reciprocal

A1 cao

M1 dim correct equation

A1 ft R if first 2 M's gained.

Q	Solution
×.	Solution

8.	Area	from AD	from AB		
	APCD 48	3	4	B1	
	<i>PBC</i> 24	8	8/3	B1	
	Circle 4π	3	3	B1	
	Lamina (72-4	(π) x	у	B1	areas
8(a)	Moments abo	out <i>AD</i>		M1	equation
	$48 \times 3 + 24 \times$	$8 = 4\pi \times 3$	$+(72-4\pi)x$	A1	ft table
	x = 5.02 cm			A1	cao
	Moments abo	out <i>AB</i>		M1	equation
	$48 \times 4 + 24 \times$	$8/3 = 4\pi \times 3$	$3 + (72 - 4\pi)y$	A 1	ft table
	y = 3.67 cm		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A 1	cao
8(b)	AQ = 3.67 cm	<u>1</u>		B1	ft y

Mark Notes

M2

Q Solution Mark Notes

1(a) Loss in KE =
$$0.5 \text{mv}^2$$

= $0.5 \times 8 \times 7^2$ M1 Corr use of KE formula
= $196J$ A1

1(b) Work energy principle M1 correct use
$$196 = F \times 15$$
 A1 ft loss in KE $F = \mu R$ $= 8g\mu = (78.4\mu)$ B1

Therefore
$$196 = 78.4 \mu \times 15$$

$$\mu = \frac{1}{6}$$
 A1 ft loss in KE. Isw

OR
Use of
$$v^2=u^2+2as$$

 $0=7^2 + 2a \times 15$
 $a = -1.633$ (M1)

Use F = ma
-F =
$$8 \times -1.633$$
 (M1)
F = $8 \mu g$ (B1)

$$\mu = \frac{13 \cdot 067}{8g} = \frac{1}{6}$$
 (A1)p

Solution

Mark Notes

 $\mathbf{r} = \int v \, \mathrm{d}t$ 2(a)

$$\mathbf{r} = \int (13t - 3) + (2 + 3t^2) \mathbf{j} \, dt$$

$$\mathbf{r} = \left(\frac{13}{2}t^2 - 3t\right) \mathbf{i} + (2t + t^3) \mathbf{j} + (\underline{\mathbf{c}})$$

M1 use of integration

A1 A1 one for each coefficient

When t = 0,

$$\mathbf{c} = 2\mathbf{i} + 7\mathbf{j}$$

 $\mathbf{r} = (6.5t^2 - 3t + 2)\mathbf{i} + (2t + t^3 + 7)\mathbf{j}$

use of initial conditions m1

A1 ft r

 $\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$ 2(b) $= 13\mathbf{i} + 6\mathbf{t}\mathbf{j}$

M1 use of differentiation

A1

2(c) We require $\mathbf{v} \cdot (\mathbf{i} - 2\mathbf{j}) = 0$

$$\mathbf{v.(i-2j)} = (13t-3) - 2(2+3t^2)$$

$$= -6t^2 + 13t - 7$$

$$6t^2 - 13t + 7 = 0$$

$$(6t-7)(t-1) = 0$$

M1used

M1allow sign errors

A1 any form

(6t - 7)(t - 1) = 0

t = 1, 7/6

method for quad equation m1Depends on both M's

A1

Solution

Mark Notes

3(a)(i) Initial horizontal speed =
$$15\cos\alpha$$
 B1
= 15×0.8
= 12 ms^{-1}

Time of flight =
$$9/12$$
 M1
= $0.75s$ A1 any correct form

$$3(a)(ii)$$
 Initial vertical speed = $15 \sin \alpha$ B1
= 15×0.6
= 9 ms^{-1}

Use of
$$s = ut + 0.5at^2$$
, $u=9(c)$, $a=(\pm)9.8$, $t=0.75(c)$ M1
 $s = 9 \times 0.75 - 0.5 \times 9.8 \times 0.75^2$
 $s = 3.99375$ m A1 si
Height of B above ground = 4.99375 m A1 ft s

3(b) use of
$$v^2 = u^2 + 2as$$
, $u=9$, $a=(\pm)9.8$, $s=-1$ M1 allow sign errors $v^2 = 9^2 + 2(-9.8)(-1)$ A1 $v^2 = 100.6$

B1

ft candidate's value

Speed =
$$\sqrt{12^2 + 100.6}$$
 m1
Speed = 15.64 ms^{-1} A1 cao

 $u_{\rm H} = 12$

Solution

Mark Notes

4(a) Resolve vertically

$$Rsin\theta = Mg$$

$$\sin\theta = \frac{3}{5}$$

$$R = Mg \times \frac{5}{3}$$

$$R = 5Mg/3$$

M1

A1

M1

A1

В1

A1 answer given, convincing.

dim correct

dim correct

4(b) N2L towards centre

$$R\cos\theta = Ma$$

$$\frac{5Mg}{3} \times \frac{4}{5} = M \times \frac{8g}{3r}$$

$$3 5$$

$$CP = r = 2$$

A1

$$\frac{\text{Height}}{r} = \frac{4}{3}$$

Height =
$$\frac{8}{3}$$
 m

use of similar triangles M1

A1 ft candidate's r if first M1

given.

Solution

Mark Notes

5(a) $0 \le t \le 6$ B1 B1

Distance t = 6 to $t = 9 = \int_{6}^{9} 2t^2 - 12t \, dt$ 5(b)

use of integration **M**1 Limits not required

Distance = $[2t^3/3 - 6t^2]_6^9$ = 72

A1 correct integration

Distance t = 0 to $t = 6 = -\int_0^6 2t^2 - 12t dt$ Distance $= -[2t^3/3 - 6t^2]_0^6$ = -[-72]= 72

A1 or for the other integral

Required distance = 72 + 72= 144

m1

A1 cao

Solution

Mark Notes

T = P/v6(a)

$$T = \frac{60 \times 1000}{20}$$

M1 used

A1

T = 3000 N

6(b) Apply N2L to car and trailer

 $T - (1500 + 500)g\sin\alpha - (170 + 30) = 2000a$ $3000 - 2000 \times 9.8 \times \frac{1}{14} - 200 = 2000a$

A2 -1 each error

 $a = 0.7 \text{ ms}^{-2}$

A1 convincing

N2L applied to trailer 6(c)

$$T - 500g\sin\alpha - 30 = 500a$$

$$T = 500 \times 9.8 \times \frac{1}{14} + 30 + 500 \times 0.7$$
$$T = 730 \text{ N}$$

A1

(A2)

OR

N2L applied to car

$$3000 - 1500g\sin\alpha - 170 - T = 1500 \times 0.7$$

$$T = 3000-1500\times9.8\times\frac{1}{14}-170-1500\times0.7$$

T =
$$3000-1500\times9.8\times\frac{1}{14}-170-1500\times0.7$$

$$T = \underline{730 \,\mathrm{N}} \tag{A1}$$

Solution

Mark Notes

PE at start = $-2 \times 9.8 \times 0.7$ 7(a)

M1 mgh used allow 0.7, (1.2+x), (0.5+x), 1.2, **A**1

= -13.72 J

PE at end = $-2 \times 9.8 \times (1.2 + x)$ = -23.52 - 19.6x

EE at end = $\frac{1}{2} \times \frac{360}{1 \cdot 2} x^2$

EE at end = $150x^2$

A1

use of formula

equation, all energies

correct equation any form

0.5, x.

Conservation of energy $150x^2 - 19.6x - 23.52 = -13.72$

 $150x^2 - 19.6x - 9.8 = 0$

A1 cao

x = 0.33

KE at end = $0.5 \times 2v^2$ = v^2 7(b)

B1

M1

M1

A1

PE at end = $-2 \times 9.8 \times 1.2$ = -23.52

Conservation of energy

 $v^2 - 23.52 = -13.72$

 $v^2 = 9.8$

 $v = 3.13 \text{ ms}^{-1}$

M1 equation, no EE

A1 correct equation, any form

A1

Solution

Mark Notes

8(a)

Conservation of energy
$$0.5\text{mu}^2 + \text{mgrcos}\alpha = 0.5\text{mv}^2 + \text{mgrcos}\theta$$

M1 equation required

A1 KE

$$0.5 \times 3 \times 5^2 + 3 \times 9.8 \times 4 \times 0.8 =$$

 $0.5 \times 3 \times v^2 + 3 \times 9.8 \times 4 \times \cos\theta$

 $75 + 188.16 = 3v^2 + 235.2\cos\theta$

$$v^{2} = 87.72 - 78.4\cos\theta$$
$$v = \sqrt{(87.72 - 78.4\cos\theta)}$$

A1 cao

8(b) N2L towards centre

$$mgcos\theta - R = ma$$

dim correct, all forces M1

A1

$$R = 3 \times 9.8\cos\theta - \frac{3}{4}(87.72 - 78.4\cos\theta)$$

substitute, v²/r m1

 $R = 29.4\cos\theta - 65.79 + 58.8\cos\theta$

 $R = 88.2\cos\theta - 65.79$

M3

Q Solution Mark Notes

1(a)(i) Apply N2L to particle
ma = -mg - 3v

$$2\frac{dv}{dt}$$
 = -19.6 - v

M1 dim correct equation **A**1

$$1(a)(ii) \int \frac{2dv}{19.6+v} = -\int dt$$

$$2\ln|19.6+v| = -t + (C)$$

$$t = 0, v = 24.5$$

$$C = 2\ln|44.1|$$

$$-t = 2\ln\left|\frac{19.6+v}{44.1}\right|$$

$$e^{-t/2} = \frac{19.6+v}{44.1}$$

M1sep. of variables

A1 correct integration

use of initial conditions m1

A1 ft no 2,1/2.

$$e^{-t/2} = \frac{19.6 + v}{44.1}$$

$$v = 44.1 e^{-t/2} - 19.6$$

inversion ln to e m1

A₁ cao

1(b) At maximum height,
$$v = 0$$

 $t = -2\ln \left| \frac{19.6}{44.1} \right|$
 $= 2 \ln(2.25) = 1.62 \text{ s}$

M1si

A1 ft similar expression

1(c)
$$\frac{dx}{dt} = 44.1 e^{-t/2} - 19.6$$

$$x = -88.2 e^{-t/2} - 19.6t (+ C)$$
When $t = 0$, $x = 0$

$$C = 88.2$$

$$x = 88.2 - 88.2 e^{-t/2} - 19.6t$$

 $v = \frac{\mathrm{d}x}{\mathrm{d}t}$ used M1

A1 ft correct integration use of initial conditions m1

A1 ft one slip

Solution

Mark Notes

2(a) Amplitude a = 0.5

B1

2(b) Period = $\frac{2\pi}{\omega}$ = 2

M1 si

 $\omega = \pi$

A1

Maximum acceleration = $a\omega^2 = 0.5 \times \pi^2$ Occurs at end points of motion

B1 ft amplitude *a*.

•

B1

2(c) Let $x = a\cos(\omega t)$ $-0.25 = 0.5\cos(\pi t)$ $\cos(\pi t) = -0.5$ M1 m1

 $\pi t = \frac{2\pi}{3}$

 $t = \frac{2}{3}$

A1 cao

2(d) $v^2 = \omega^2 (a^2 - x^2), x = 0.3, \omega = \pi$ $v^2 = \pi^2 (0.5^2 - 0.3^2)$ $v^2 = \pi^2 \times 0.4^2$

M1 A1

.1 ft

 $v = (\pm)0.4\pi$
speed = 0.4π

A1 cao

	`
•	,

ution

Mark Notes

$$3(a)(i)$$
 Apply N2L to P

$$2a = -8x - 10v$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -4x - 5\frac{\mathrm{d}x}{\mathrm{d}t}$$

B1

B1

B1

M1

$$3(a)(ii) \frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = 0$$

Auxiliary equation
$$m^2 + 5m + 4 = 0$$

$$(m + 4)(m + 1) = 0$$

 $m = -4, -1$

$$x = Ae^{-t} + Be^{-4t}$$

use of initial conditions

solving simultaneously

comparing coefficients

When
$$t = 0$$
, $x = 2$, $\frac{dx}{dt} = 3$

$$2 = A + B$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -A\mathrm{e}^{-t} - 4 B\mathrm{e}^{-4t}$$

$$3 = -A - 4B$$

m1

CF

$$5 = -3B$$

$$B = -\frac{5}{3}$$

$$A = 2 + \frac{5}{3} = \frac{11}{3}$$

$$x = \frac{11}{3} e^{-t} - \frac{5}{3} e^{-4t}$$

cao

$$3(b) \quad \text{Try } x = at + b$$

$$\frac{\mathrm{d}x}{\mathrm{d}x} = a$$

$$5a + 4(at + b) = 12t - 3$$

$$4a = 12$$

$$a = 3$$

$$5a + 4b = -3$$

$$15 + 4b = -3$$

$$4b = -18$$

$$b = -\frac{9}{2}$$

General solution
$$x = Ae^{-t} + Be^{-4t} + 3t - \frac{9}{2}$$

Q	Solution	Mark	Notes
4	Initial speed of A just before impact = v		
	$v^2 = u^2 + 2as$, $u=0$, $a=(\pm)9.8$, $s=(1.8-0.2)$	M 1	
	$v^2 = 0 + 2 \times 9.8 \times 1.6$	A 1	
	$v = 5.6 \text{ ms}^{-1}$	A1	cao
	Impulse = Change in momentum Applied to B	M1	used
	J = 3v	B1	
	Applied to A		
	$J = 5 \times 5.6 - 5v$	A1	ft c's answer in (a)
	Solving		
	3v = 28 - 5v	m1	
	8v = 28		
	$v = 3.5 \text{ ms}^{-1}$	A1	cao
	J = 10.5 Ns	A 1	cao

5(a) N2L applied to particle

$$0.25 \ a = \frac{5}{2x+1}$$

$$v\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{20}{2x+1}$$

M1
$$a = v \frac{dv}{dx}$$

$$\int v \, \mathrm{d}v = 10 \int \frac{2}{2x+1} \mathrm{d}x$$

$$\frac{1}{2}v^2 = 10 \ln |2x + 1| + C$$

When x = 0, v = 4

LHS correct **A**1

$$9 - 101n(1) + 6$$

use of boundary cond. m1

$$8 = 10 \ln(1) + C$$

$$= 10 \ln(1) + C$$

$$C = 8$$

$$C = 8$$

$$v^2 = 20 \ln |2x + 1| + 16$$

$$\ln |2x+1| = \frac{1}{20} (v^2 - 16)$$

$$2x + 1 = e^{0.05(v^2 - 16)}$$

$$x = 0.5(e^{0.05(v^2 - 16)} - 1)$$

A1 cao any equivalent exp.

5(b)
$$v = 6$$

 $x = 0.5(e^{0.05(36-16)} - 1)$
 $x = 0.5(e-1)$

M1 exp. with
$$v^2$$
 needed

$$x = 0.3(c)$$
$$x = 0.86 \text{ m}$$

A1 cao

$$20 = 10x + 5$$
$$x = 1.5$$

A1

$$v^2 = 20 \ln(3+1) + 16$$

m1substitution in expression with v^2 .

$$= 20 \ln 4 + 16$$

 $v = 6.61 \text{ ms}^{-1}$

A1

cao

Solution

Mark Notes

6

6(a) Moments about A

$$6g \times 2 + 3g \times 3 = T \times 4\sin\theta$$
$$4 \times \frac{3}{5}T = 21g$$
$$T = \frac{35}{4}g = 85.75 \text{ N}$$

M1 equation, no extra forces No missing forces

A2 -1 each error

A1 cao

6(b) Resolve vertically

$$T\sin\theta + Y = 9g$$

$$Y = 9g - \frac{35}{4}g \times \frac{3}{5}$$

$$Y = \frac{15}{4}g = 36.75 \text{ N}$$

M1 equation, all forces, no extra force

A1 cao

A1

Resolve horizontally

$$T\cos\theta = X$$

$$X = \frac{35}{4} g \times \frac{4}{5}$$

 $X = 7g = 68.6 \text{ N}$

M1 equation, all forces, No extra force

A1 cao

6(b)(i) Magnitude of reaction at wall

$$= \sqrt{68 \cdot 6^2 + 36 \cdot 75^2}$$

$$= 77.82 \text{ N}$$

$$6(b)(ii) \mu = \frac{Y}{X}$$

A1 ft
$$X$$
 and Y

$$\mu = \frac{15}{4 \times 7} = \frac{15}{28}$$

A1 ft
$$X$$
 and Y if answer<1.

Ques	Solution	Mark	Notes
1(a)	$P(A \cup B) = P(A) + P(B)$	M1	Award M1 for using formula
, ,	P(B) = 0.4 - 0.25 = 0.15	A1	
(b)	$P(A \cup B) = P(A) + P(B) - P(A)P(B)$	M1	Award M1 for using formula
	0.4 = 0.25 + P(B) - 0.25P(B)	A1	
	P(B) = 0.15/0.75 = 0.2	A1	
2 (a)	D(4 6 1)		
	P(1 of each) =		
	$\frac{5}{10} \times \frac{3}{9} \times \frac{2}{8} \times 6 \text{ or } {5 \choose 1} \times {3 \choose 1} \times {2 \choose 1} \div {10 \choose 3}$	M1A1	M1A0A0 if 6 omitted
	10 9 8 (1) (1) (3)		Special case: if they use an
	1	A1	incorrect total, eg 9 or 11, FT
	$=\frac{1}{4}$	122	their incorrect total but subtract
(b)	5 4 3 (5) (10)	3.54	2 marks at the end
	$P(3 \text{ war}) = \frac{5}{10} \times \frac{4}{9} \times \frac{3}{8} \text{ or } \begin{pmatrix} 5 \\ 3 \end{pmatrix} \div \begin{pmatrix} 10 \\ 3 \end{pmatrix}$	M1	
	10) 0 (3) (3)		
	$=\frac{1}{12}$	A1	
(c)	P(3 cowboy) = $\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8}$ or $\begin{pmatrix} 3 \\ 3 \end{pmatrix} \div \begin{pmatrix} 10 \\ 3 \end{pmatrix}$		
	$10^{-9} \ 8^{-1} \ (3)^{-1} \ (3)^{-1} $		
	_ 1	B1	
	$=\frac{1}{120}$		
	$\mathbf{p}(2, 4, \dots, 2) = 1 + 1 = 11$	M1A1	
	$P(3 \text{ the same}) = \frac{1}{12} + \frac{1}{120} = \frac{11}{120}$		FT previous values
	T(W) 00	70.4	
3	E(X) = 20	B1 B1	
	Var(X) = 4 (SD = 2)	B1	
	E(Y) = 20a + b = 65	B1	Accept $SD(Y) = 2a = 6$
	$Var(Y) = 4a^2 = 36$	B1	Must be justified by solving the
	a = 3 $b = 5$	B1	two equations
4(a)(i)	B(20,0.25)	B1	B must be mentioned and the
(ii)	$P(3 \le X \le 9) = 0.9087 - 0.0139 \text{ or } 0.9861 - 0.0913$	B1B1	parameters n and p must be seen
(11)	= 0.8948	B1	or implied somewhere in the
(iii)			question
	$P(X = 6) = {20 \choose 6} \times 0.25^6 \times 0.75^{14}$	M1	FT an incorrect p except for the
			last three marks
	= 0.169	A1	M0 if no working seen
(b)(i)	Let <i>Y</i> denote the number of throws giving '8'		
(0)(1)	Then Y is B(160,0.0625) \approx Poi(10).	D1	
		B 1	
	$P(Y = 12) = e^{-10} \times \frac{10^{12}}{12!}$	M1	MO if no working soon
	= 0.0948	A 4	M0 if no working seen Accept the use of tables
(ii)	= 0.0948 P(6\le Y\le 14) = 0.9165 - 0.0671 or 0.9329 - 0.0835	A1 D1D1	Correct values only (no FT)
	= 0.8494 cao	B1B1	Correct values only (no 1-1)
	- 0.0474 CaU	B1	

5(a)	$P(1) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$	3.51.1	M1 Use of Law of Total Prob
	$P(1) = \frac{1}{3} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2}$	M1A1	(Accept tree diagram)
	$=\frac{13}{36} (0.361)$	A1	
(b)	30		
(0)	$P(A 1) = \frac{1/12}{13/36}$	B1B1	FT denominator from (a)
			B1 num, B1 denom
	$=\frac{3}{13}$ cao (0.231)	B1	
6(a)	The sequence is MMMH si	B1	
0(4)	Prob = $0.3 \times 0.3 \times 0.3 \times 0.7 = 0.0189$	M1A1	
(b)	The sequence is MHH or HMH si	B1	1510015
	$Prob = 0.3 \times 0.7 \times 0.7 + 0.7 \times 0.3 \times 0.7 = 0.294$	M1A1	Award B1 for 0.147
7(a)	(1 1 1)		
/(a)	$\sum p_x = k \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) = 1$	M1	
	(8+4+2+1) 8	A1	Convincing
	$k\left(\frac{8+4+2+1}{8}\right) = 1 \rightarrow k = \frac{8}{15}$	AI	Convincing
(b)			
	$E(X) = \frac{8}{15} \times 1 + \frac{4}{15} \times 2 + \frac{2}{15} \times 4 + \frac{1}{15} \times 8$	M1	
	13 13 13 13		
	$=\frac{32}{15} (2.13)$	A1	
	$E(X^{2}) = \frac{8}{15} \times 1 + \frac{4}{15} \times 4 + \frac{2}{15} \times 16 + \frac{1}{15} \times 64 (8)$	M1A1	
	15 15 15		
(c)(i)	$Var(X) = 8 - \left(\frac{32}{15}\right)^2 = 3.45 (776/225)$	A1	Accept 3.46
	The possibilities are (1,1); (2,2); (4,4); (8,8) si	B1	
	$P(X_1 = X_2) = \left(\frac{8}{15}\right)^2 + \left(\frac{4}{15}\right)^2 + \left(\frac{2}{15}\right)^2 + \left(\frac{1}{15}\right)^2$	M1	
(ii)	$=\frac{17}{45} \ (0.378)$	A1	
	It follows that $P(X_1 \neq X_2) = \frac{28}{45}$	M1	FT their answer from (c)(i)
	And therefore by symmetry $P(X_1 > X_2) = \frac{14}{45}$	A1	Do not accept any other method.
	.5		

8(a)	Let <i>X</i> denote the number of calls between 9am and		
0(a)	10 am so that X is $Po(5)$	B 1	
	$P(X = 7) = \frac{e^{-5} \times 5^{7}}{7!}$	M1	M0 no working
		A1	Wio no working
(b)	= 0.104	711	
(6)	We require		
	P(calls betw 9 and 10=7 calls betw 9 and 11=10)		
	$= \frac{P(c b 9 \text{ and } 10 = 7 \text{ AND } c b 9 \text{ and } 11 = 10)}{P(\text{calls between } 9 \text{ and } 11 = 10)}$	M1	
	P(calls between 9 and 11=10)		
	$P(c b 9 and 10 = 7) \times P(c b 10 and 11 = 3)$		
	$= \frac{P(c b 9 \text{ and } 10 = 7) \times P(c b 10 \text{ and } 11 = 3)}{P(\text{calls between } 9 \text{ and } 11 = 10)}$	A1	
	$= \frac{e^{-5} \times 5^{7}}{7!} \times \frac{e^{-5} \times 5^{3}}{3!} \div \frac{e^{-10} \times 10^{10}}{10!} (denom = 0.125)$	A1A1	A1 numerator, A1 denominator
	7: 5: 10:		The denominator A1 can be
	= 0.117	A1	awarded if the M1 is awarded
9(a)	$\frac{2}{2}\left(x^{2}\right)$		
	$\int_{0}^{2} k \left(1 - \frac{x^2}{4} \right) dx = 1$	M1	M1 for $\int f(x)dx$, limits not
	0 (4)		· · · · · · · · · · · · · · · · · · ·
	$\begin{bmatrix} x^3 \end{bmatrix}^2$		required until next line
	$k\left[x-\frac{x^3}{12}\right]^2=1$	A1	
	L		
	$k\left(2-\frac{8}{12}\right)=1$	A1	
	$k = \frac{3}{4}$		
(b)	T		
(~)	$E(X) = \int_{0}^{2} x(\frac{3}{4} - \frac{3x^{2}}{16}) dx$	M1A1	M1 for the integral of $xf(x)$, A1
	$L(A) = \int_{0}^{A} (4 - 16)^{A}$		for completely correct although
	Γ ₂ 2 4 7 ²	A1	limits may be left until 2 nd line.
	$= \left \frac{3x^2}{3x^4} - \frac{3x^4}{3x^4} \right $		
	$= \left[\frac{3x^2}{8} - \frac{3x^4}{64} \right]_0^2$	A1	
	= 0.75		
(c)(i)	$\overset{x}{\circ}$ 3 $3t^2$	M1	M1 for $\int f(x) dx$
(-)()	$F(x) = \int_{0}^{x} \left(\frac{3}{4} - \frac{3t^{2}}{16}\right) dt$	1711	$\int \int \int (x) dx$
	$\frac{3}{0}$ 4 16		
	$\begin{bmatrix} 3t & t^3 \end{bmatrix}^x$	A1	A1 for performing the
	$=\left[\frac{3t}{4}-\frac{t^{3}}{16}\right]_{0}^{x}$		integration
	2 20	A 1	
	$=\frac{3x}{4}-\frac{x^3}{16}$	A1	A1 for dealing with the limits
	$-\frac{4}{4}-\frac{16}{16}$		
(ii)		М1	
	$P(0.5 \le X \le 1.5) = F(1.5) - F(0.5)$	M1 A1	FT their $F(x)$
	= 0.547	AI	

Ques	Solution	Mark	Notes
1(a)(i)	$z = \frac{10.5 - 10}{2} = 0.25$	M1A1	M0 for 2^2 or $\sqrt{2}$
	$P(X \le 10.5) = 0.5987$	A1	M1A0 for – 0.25 if final answer incorrect
	$\Gamma(X \le 10.5) = 0.5987$	AI	M0 no working
(ii)	$x = \frac{x - \mu}{\sigma} = 1.282$	2/1	351 6 0 00 6 1 615 0 556
		M1 A1	M1 for 2.326, 1.645, 2.576 Accept 12.6
(b)(i)	= 12.564		71000pt 12.0
	E(X+2Y)=34	B1	
	Var(X + 2Y) = Var(X) + 4Var(Y) $= 40$	B1	
	= 40 We require $P(X + 2Y < 36)$		
	$z = \frac{36 - 34}{\sqrt{40}} = 0.32$	M1A1	
	$z = \frac{1}{\sqrt{40}} = 0.32$	WIIAI	FT their mean and variance M0 no working
(ii)	Prob = 0.6255	A1	Mo no working
	Consider $U = X_1 + X_2 + X_3 - Y_1 - Y_2$		
	E(U) = $3 \times 10 - 2 \times 12 = 6$	B1	
	$Var(U) = 3 \times 4 + 2 \times 9 = 30$	M1A1	
	We require $P(U \le 0)$		D (FT4)
	$z = \frac{0-6}{\sqrt{30}} = -1.10$	m1A1	Do not FT their mean and variance
	$\sqrt{30}$ $Prob = 0.136$	A1	, an rance
	1100 – 0.130		
2(a)	$\bar{x} = \frac{9980}{50}$ (= 199.6)	B1	
	50		
	SE of $\overline{X} = \frac{4}{\sqrt{50}}$ (= 0.5656)	B1	
	√50 95% conf limits are		
	$199.6 \pm 1.96 \times 0.5656$	M1A1	M1 correct form, A1 correct <i>z</i> .
	giving [198.5, 200.7] cao	A1	M0 no working
(b)	4		
	Width of 95% CI = $3.92 \times \frac{4}{\sqrt{n}}$ si	B 1	FT their z from (a)
	We require		
	$3.92 \times \frac{4}{\sqrt{n}} < 1$	3.51	Award M1A0A0 for 1.96
	• 1	M1 A1	instead of 3.92
	n > 245.86 Minimum $n = 246$	A1	FT from line above if $n > 50$
	n = 270		
		1	1

3(a)	$H_0: \mu_B = \mu_G; H_1: \mu_B \neq \mu_G$	B1	
(b)	$\overline{x}_B = \frac{482}{8} = 60.25; \overline{x}_G = \frac{430}{8} = 53.75$	B1B1	
	SE of diff of means= $\sqrt{\frac{7.5^2}{8} + \frac{7.5^2}{8}}$ (3.75)	M1A1	
	Test statistic (z) = $\frac{60.25 - 53.75}{3.75}$	m1A1	
	= 1.73 Prob from tables = 0.0418 $p-value = 0.0836$ Insufficient evidence to conclude that there is a	A1 A1 B1	FT their z if M marks gained FT on line above
	difference in performance between boys and girls.		FT their <i>p</i> -value
4(a) (b)	$H_0: p = 0.4; H_1: p > 0.4$ Let $X = \text{No.}$ supporting politician so that	B1	
	$X \text{ is B}(50,0.4) \text{ (under H}_0) \text{ si}$ $p\text{-value} = P(X \ge 25 X \text{ is B}(50,0.4))$ = 0.0978	B1 M1 A1	M0 for $P(X = 25)$ or $P(X > 25)$ M0 normal or Poisson approx
	Insufficient evidence to conclude that the support is greater than 40%.	B1	FT on p-value
(c)	X is now B(400,0.4) (under H ₀) \approx N(160,96) p -value = P(X \geq 181 X is N(160,96))	B1 M1	
	$z = \frac{180.5 - 160}{\sqrt{96}}$	m1A1	Award m1A0A1A1 for incorrect
	= 2.09 p-value = 0.0183 Strong evidence to conclude that the support is	A1 A1	or no continuity correction $181.5 \rightarrow z = 2.19 \rightarrow p = 0.01426$ $181 \rightarrow z = 2.14 \rightarrow p = 0.01618$
	greater than 40%.	B1	FT on p-value
5(a)	$H_0: \mu = 1.2 : H_1: \mu < 1.2$	B1	Must be μ
(b)(i)	Let $X =$ number of accidents in 60 days Then X is Poi(72) (under H ₀) \approx N(72,72) si	B1	
	Sig level = $P(X \le 58 H_0)$ $z = \frac{58.5 - 72}{\sqrt{72}}$	M1 m1A1	Award m1A0A1A1 for incorrect or no continuity correction
(ii)	= -1.59 Sig level = 0.0559 X is now Poi(48) which is approx N(48,48) si	A1 A1 B1 M1	$57.5 \rightarrow z = -1.71 \rightarrow p = 0.0436$ $58 \rightarrow z = -1.65 \rightarrow p = 0.0495$
	P(wrong conclusion) = P($X \ge 59$ $\mu = 0.8$) $z = \frac{58.5 - 48}{\sqrt{48}}$ $= 1.52$ P(wrong conclusion) = 0.0643	m1A1 A1 A1	Award m1A0A1A1 for incorrect or no continuity correction $59.5 \rightarrow z = 1.66 \rightarrow p = 0.0485$ $59 \rightarrow z = 1.59 \rightarrow p = 0.0559$

6(a)(i)	$E(C) = 2\pi E(R)$	M1	
	$=2\pi \times 7 = 14\pi (43.98)$	A1	Accept the use of integration,
	$Var(C) = 4\pi^2 Var(R)$	M1	M1 for a correct integral and A1 for the correct answer
(::)	$=\frac{4\pi^2}{3} (13.16)$	A1	
(ii)	$P(C \le 45) = P(R \le 45/2\pi)$	M1	
	$=\frac{(45/2\pi-6)}{8-6}$	A1	
	= 0.581	A1	
(b)(i)	$A = \pi R^2$		
	$P(A \ge 150) = P\left(R \ge \sqrt{150/\pi}\right)$	M1A1	
	$= \frac{8 - \sqrt{150/\pi}}{8 - 6}$	A1	
(ii)	= 0.545	A1	
, ,	EITHER		
	$E(A) = \int_{6}^{8} \pi r^2 \times \frac{1}{2} dr$	M1	
	$=\frac{\pi}{6}\left[r^{3}\right]_{6}^{8}$	A1	
	$=\frac{148\pi}{3}$ (155)	A1	
	OR		
	$E(A) = \pi E(R^2) = \pi \left(var(R) + \left(E(R) \right)^2 \right)$	M1	
	$=\pi\left(\frac{1}{3}+7^2\right)$	A1	
	$=\frac{148\pi}{3} \ (155)$	A1	

Ques	Solution	Mark	Notes
1	$\hat{p} = 0.29$ si	B1	
	ESE = $\sqrt{\frac{0.29 \times 0.71}{300}}$ (= 0.02619) si	M1A1	
	95% confidence limits are $0.29 \pm 1.96 \times 0.02619$ giving [0.24,0.34]	m1A1 A1	m1 correct form, A1 1.96
2	The possibilities are $\frac{3 \text{ red}, 1 \text{ blue for which } X - Y = 2}{\text{Therefore,}}$		
	$P(X - Y = 2) = \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} \times \frac{7}{7} \times 4 \text{ OR } \frac{\binom{3}{3} \times \binom{7}{1}}{\binom{10}{4}}$	M1A1	
	$=\frac{1}{30}$	A1	
	2 red, 2 blue for which $ X - Y = 0$		
	$\frac{2 \text{ red, 2 blue for which } X - Y = 0}{P(X - Y = 0)} = \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} \times \frac{6}{7} \times 6 \text{ OR } \frac{\binom{3}{2} \times \binom{7}{2}}{\binom{10}{4}}$		
	$=\frac{3}{10}$	B1	
	$\frac{1 \text{ red, 3 blue for which } X - Y = 2}{P(X - Y = -2)} = \frac{3}{10} \times \frac{7}{9} \times \frac{6}{8} \times \frac{5}{7} \times 4 \text{ OR } \frac{\binom{3}{1} \times \binom{7}{3}}{\binom{10}{4}}$		
	$=\frac{1}{2}$	B1	
	<u>0</u> red, 4 blue for which $ X - Y = 4$		
	$P(X - Y = -4) = \frac{7}{10} \times \frac{6}{9} \times \frac{5}{8} \times \frac{4}{7} \text{ OR } \frac{\binom{7}{4}}{\binom{10}{4}} = \frac{1}{6}$	B1	FT if found as 1 - Σprobs
	The distribution of $ X - Y $ is therefore	M1A1	FT their probabilities

3(a)	UE of $\mu = 34.3$	B1	No working need be seen
	$\Sigma x^2 = 10609.43$	B1	C
	UE of $\sigma^2 = \frac{10609.43}{8} - \frac{9 \times 34.3^2}{8}$	M1	M0 division by 0
	9	M1 A1	M0 division by 9 Answer only no marks
(b)	= 2.6275		2
(b)	DF = 8 si t-value = 1.86	B1 B1	
	90% confidence limits are	DI	
	2.6275	M1A1	
	$34.3 \pm 1.86 \sqrt{\frac{2.6275}{9}}$	112222	
	giving [33.3,35.3] cao	A1	Answer only no marks
(c)	EITHER		
	Width of interval = $2t\sqrt{\frac{2.6275}{9}} = 3.2$	M1	
	•	M1 A1	
	So $t = 2.96$ For a 99% confidence interval, $t = 3.355$	B1	
	Since $2.96 < 3.355$, the confidence level is less	A1	
	than 99%		
	OR	B1	
	For 99% confidence interval, $t = 3.355$ 99% confidence limits are		
	$34.3 \pm 3.355 \sqrt{\frac{2.6275}{9}}$	M1	
	giving [32.5,36.1]	A1	
	The given confidence interval is narrower than	A1	
	this therefore its confidence level is less than 99%	AI	
4(a)	The 50% with all reduces 2000 to 1 (45 to 2554		
	The 5% critical value = $2000 + 1.645 \times \sqrt{\frac{2331}{120}}$	M1	N. 1. 4. 0. C
	= 2007.6	A1	M1A0 for –
	The 10% critical value = $2000 + 1.282 \times \sqrt{\frac{2554}{120}}$		
		M1	M1A0 for $-$
	= 2005.9	A1	
	The required range is therefore (2005.9,2007.6)	A1	
(b)	No because of the Central Limit Theorem	B1	
	AND THEN EITHER		
	which ensures the normality of the sample mean	D1	
	OR which can be used because the sample is large	B1	
	which can be used because the sample is large		

5(a) (b)	$H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$ $\bar{x} = 55.25; \bar{y} = 55.75 \qquad \text{si}$ $s_x^2 = \frac{183345}{59} - \frac{3315^2}{59 \times 60} = 3.2415$ $s_y^2 = \frac{186651}{59} - \frac{3345^2}{59 \times 60} = 2.8347$ [Accept division by 60 giving 3.1875 and 2.7875] $SE = \sqrt{\frac{3.2415}{60} + \frac{2.8347}{60}}$ $= (0.3182, 0.3155) \qquad \text{si}$	B1 B1 M1A1 A1 M1	
	Test stat = $\frac{55.75 - 55.25}{0.3182}$ = 1.57 (1.58) $p\text{-value} = 0.116 \text{ (0.114) cao}$ Insufficient evidence for believing that the mean weights are unequal.	m1 A1 A1 B1	FT 1 error in the means Answer only no marks FT their p-value
6(a)	$\sum x = 175, \sum x^2 = 5075, \sum y = 118.1, \sum xy = 3170$ $S_{xy} = 3170 - 175 \times 118.1/7 = 217.5$ $S_{xx} = 5075 - 175^2/7 = 700$ $b = \frac{217.5}{700} = 0.311$ $a = \frac{118.1 - 175 \times 0.311}{7} = 9.10$	B2 B1 B1 M1 A1 M1 A1	Minus 1 each error FT 1 error in sums
(b)	SE of $a = \sqrt{\frac{0.1^2 \times 5075}{7 \times 700}}$ (0.1017) 95% confidence limits for α are 9.10±1.96×0.1017 giving [8.9,9.3]	M1A1 m1A1 A1	FT their value of <i>a</i> M1 correct form, A1 1.96

7(a)	F(Y) nn	M1	
/(a)	$E(\hat{p}) = \frac{E(X)}{n} = \frac{np}{n} = p$	A1	
	Therefore unbiased.		This line need not be seen
	$\operatorname{Var}(X)$ $\operatorname{Var}(X)$ $\operatorname{Inp}(1-p)$ $\operatorname{Inp}(1-p)$	M1	A
	$\operatorname{SE}(\hat{p}) = \sqrt{\frac{\operatorname{Var}(X)}{n^2}} = \sqrt{\frac{np(1-p)}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$	A1	Accept q for $1-p$
(b)(i)			
	$\mathrm{E}(\hat{p}^2) = \frac{\mathrm{E}(X^2)}{n^2}$	M1	
	$= \frac{\operatorname{Var}(X) + [\operatorname{E}(X)]^2}{n^2}$	m1	
	$={n^2}$		
	$=\frac{np(1-p)+n^2p^2}{n^2}$	A1	
	$I \iota$		
	$(=p^2 + \frac{p(1-p)}{n})$		This line need not be seen
	$\neq p^2$ therefore not unbiased	A1	
(ii)	•		
	$E[X(X-1)] = E(X^2) - E(X)$	M1	
	$= np(1-p) + n^2p^2 - np$	A1	
	$= n(n-1)p^2$	A1	
	It follows that		
	$\frac{X(X-1)}{n(n-1)}$	A1	
	n(n-1)	111	
(c)(i)	is an unbiased estimator for p^2 .		
	EITHER	3.41	
	By reversing the interpretation of success and failure, it follows that	M1	
	$\frac{(n-X)(n-X-1)}{(n-X)(n-X-1)}$	A1	
	$\frac{(n-1)(n-1)}{n(n-1)}$		
	is an unbiased estimator for q^2 .		
	OR	N/11	
	$q^2 = (1-p)^2 = 1-2p+p^2$	M1	
	Therefore an unbiased estimator for q^2 is		
(**)	_	A1	This expression need not be
(ii)	$1 - \frac{2X}{n} + \frac{X(X-1)}{n(n-1)}$	N/I1	simplified
	Since $pq = p(1-p) = p-p^2$	M1	
	It follows that an unbiased estimator for pq	A 1	
	$=\frac{X}{n}-\frac{X(X-1)}{n(n-1)}$	111	
	` '		
	$=\frac{X(n-X)}{n(n-1)}$	A1	
	n(n-1)		

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>