

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2013

Ques	Solution	Mark	Notes
1(a)(i)	$z = \frac{10.5 - 10}{2} = 0.25$	M1A1	M0 for 2^2 or $\sqrt{2}$ M1A0 for -0.25 if final answer
(**)	$P(X \le 10.5) = 0.5987$	A1	incorrect M0 no working
(ii)	$x = \frac{x - \mu}{\sigma} = 1.282$	M1	M1 for 2.326, 1.645, 2.576
(b)(i)	= 12.564	A1	Accept 12.6
	E(X + 2Y) = 34 $Var(X + 2Y) = Var(X) + 4Var(Y)$	B1	
	= 40 We require $P(X + 2Y < 36)$	B1	
	$z = \frac{36 - 34}{\sqrt{40}} = 0.32$	M1A1	FT their mean and variance M0 no working
(ii)	Prob = 0.6255	A1	WIO HO WORKING
	Consider $U = X_1 + X_2 + X_3 - Y_1 - Y_2$ $E(U) = 3 \times 10 - 2 \times 12 = 6$ $Var(U) = 3 \times 4 + 2 \times 9 = 30$	B1	
	We require $P(U \le 0)$	M1A1	De net ET the in mean and
	$z = \frac{0-6}{\sqrt{30}} = -1.10$	m1A1	Do not FT their mean and variance
	Prob = 0.136	A1	
2(a)	$\bar{x} = \frac{9980}{50}$ (= 199.6)	B1	
	SE of $\overline{X} = \frac{4}{\sqrt{50}}$ (= 0.5656)	B1	
	95% conf limits are $199.6 \pm 1.96 \times 0.5656$	M1A1	M1 correct form, A1 correct z.
	giving [198.5, 200.7] cao	A1	M0 no working
(b)	Width of 95% CI = $3.92 \times \frac{4}{\sqrt{n}}$ si	B1	FT their z from (a)
	We require $3.92 \times \frac{4}{\sqrt{n}} < 1$ $n > 245.86$ Minimum $n = 246$	M1 A1 A1	Award M1A0A0 for 1.96 instead of 3.92 FT from line above if $n > 50$

3(a)	$H_0: \mu_B = \mu_G; H_1: \mu_B \neq \mu_G$	B1	
(b)	$\bar{x}_B = \frac{482}{8} = 60.25; \bar{x}_G = \frac{430}{8} = 53.75$	B1B1	
	SE of diff of means= $\sqrt{\frac{7.5^2}{8} + \frac{7.5^2}{8}}$ (3.75)	M1A1	
	Test statistic (z) = $\frac{60.25 - 53.75}{3.75}$	m1A1	
	= 1.73 Prob from tables = 0.0418 $p-value = 0.0836$ Insufficient evidence to conclude that there is a	A1 A1 B1	FT their z if M marks gained FT on line above
	difference in performance between boys and girls.	B1	FT their <i>p</i> -value
4(a) (b)	$H_0: p = 0.4; H_1: p > 0.4$ Let $X = \text{No.}$ supporting politician so that	B1	
	$X \text{ is B}(50,0.4) \text{ (under H}_0) \text{ si}$ $p\text{-value} = P(X \ge 25 X \text{ is B}(50,0.4))$ = 0.0978	B1 M1 A1	M0 for $P(X = 25)$ or $P(X > 25)$ M0 normal or Poisson approx
	Insufficient evidence to conclude that the support is greater than 40%.	B1	FT on p-value
(c)	X is now B(400,0.4) (under H ₀) \approx N(160,96) p -value = P(X \geq 181 X is N(160,96))	B1 M1	
	$z = \frac{180.5 - 160}{\sqrt{96}}$	m1A1	Award m1A0A1A1 for incorrect
	= 2.09 p-value = 0.0183 Strong evidence to conclude that the support is	A1 A1	or no continuity correction $181.5 \rightarrow z = 2.19 \rightarrow p = 0.01426$ $181 \rightarrow z = 2.14 \rightarrow p = 0.01618$
	greater than 40%.	B1	FT on p-value
5(a)	H_0 : $\mu = 1.2$: H_1 : $\mu < 1.2$ Let $X =$ number of accidents in 60 days	B1	Must be μ
(b)(i)	Then X is Poi(72) (under H ₀) \approx N(72,72) si	B1	
	Sig level = $P(X \le 58 H_0)$ $z = \frac{58.5 - 72}{\sqrt{72}}$	M1 m1A1	Award m1A0A1A1 for incorrect or no continuity correction
(ii)	= -1.59 Sig level = 0.0559 X is now Poi(48) which is approx N(48,48) si	A1 A1 B1 M1	$57.5 \rightarrow z = -1.71 \rightarrow p = 0.0436$ $58 \rightarrow z = -1.65 \rightarrow p = 0.0495$
	P(wrong conclusion) = $P(X \ge 59 \mu = 0.8)$ $z = \frac{58.5 - 48}{\sqrt{48}}$ $= 1.52$ P(wrong conclusion) = 0.0643	m1A1 A1 A1	Award m1A0A1A1 for incorrect or no continuity correction $59.5 \rightarrow z = 1.66 \rightarrow p = 0.0485$ $59 \rightarrow z = 1.59 \rightarrow p = 0.0559$

6(a)(i)	$E(C) = 2\pi E(R)$	M1	
	$=2\pi \times 7 = 14\pi (43.98)$	A1	Accept the use of integration,
	$Var(C) = 4\pi^2 Var(R)$	M1	M1 for a correct integral and A1 for the correct answer
(ii)	$=\frac{4\pi^2}{3} (13.16)$	A1	
(II)	$P(C \le 45) = P(R \le 45/2\pi)$	M1	
	$=\frac{(45/2\pi-6)}{8-6}$	A1	
	= 0.581	A1	
(b)(i)	$A = \pi R^2$		
	$P(A \ge 150) = P\left(R \ge \sqrt{150/\pi}\right)$	M1A1	
	$= \frac{8 - \sqrt{150/\pi}}{8 - 6}$	A1	
(ii)	= 0.545	A1	
()	EITHER	111	
	$E(A) = \int_{6}^{8} \pi r^2 \times \frac{1}{2} dr$	M1	
	$=\frac{\pi}{6}\left[r^3\right]_6^8$	A1	
	$=\frac{148\pi}{3}$ (155)	A1	
	OR		
	$E(A) = \pi E(R^2) = \pi \left(var(R) + \left(E(R) \right)^2 \right)$	M1	
	$=\pi\left(\frac{1}{3}+7^2\right)$	A1	
	$=\frac{148\pi}{3} \ (155)$	A1	