

## **GCE MARKING SCHEME**

# **MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced**

**SUMMER 2014** 

#### **INTRODUCTION**

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE MATHEMATICS C1-C4 & FP1-FP3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

|     | Page |
|-----|------|
| C1  | 1    |
| C2  | 6    |
| C3  | 11   |
| C4  | 16   |
| FP1 | 21   |
| FP2 | 26   |
| FP3 | 30   |

**C1** 

| 1. | (a) | (i)                                                               | Gradient of A                                                                       | $B = \underbrace{\text{increase in } y}_{\text{increase in } x}$                                                           |                                                      |          | M1                               |
|----|-----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|----------------------------------|
|    |     |                                                                   | Gradient of A                                                                       |                                                                                                                            | (or equivale                                         | nt)      | <b>A</b> 1                       |
|    |     | (ii)                                                              | candidate's va<br>Equation of A                                                     | hod for finding the<br>alue for the gradient<br>$B: y-3=-\frac{1}{2}(x)$<br>ne candidate's value                           | of $AB$ .<br>(-12) (or equi                          | valent)  | M1<br>A1                         |
|    | (b) | <ul><li>(i)</li><li>(ii)</li><li>(iii)</li></ul>                  | Equation of $L$<br>(f.t. the A correct met $D(4, 7)$                                | ont $L \times \text{gradient } AB = 1$<br>y = 2x - 1<br>e candidate's value<br>hod for finding the shod for finding the    | for the gradient coordinates of <i>D</i> (convincing | ng)      | M1<br>A1<br>M1<br>A1<br>M1<br>A1 |
|    | (c) | (i)<br>(ii)                                                       | A correct met $E(8, 15)$ ACBE is a kite                                             | hod for finding the                                                                                                        |                                                      | (c.a.o.) | M1<br>A1<br>B1                   |
| 2. | (a) | Nume<br>Denote $3\sqrt{3} + 5\sqrt{3} - 5\sqrt{3}$ Speci<br>If M1 | minator:<br>$\underline{1} = 2 + \sqrt{3}$<br>7<br>al case<br>not gained, allo      | $\frac{5\sqrt{3} + 7}{5\sqrt{3} + 7}$ $45 + 21\sqrt{3} + 5\sqrt{3} + 7$ $75 - 49$ ow B1 for correctly ag multiplication of | simplified nume                                      | ,        | M1 A1 A1 A1                      |
|    | (b) | $\frac{\sqrt{150}}{\sqrt{3}}$                                     | $\sqrt{24} = 12\sqrt{2}$ $= 5\sqrt{2}$                                              |                                                                                                                            |                                                      |          | B1<br>B1                         |
|    |     | $\frac{36}{\sqrt{2}} = \sqrt{12}$                                 | $18\sqrt{2}$ $\times \sqrt{24}) + \frac{\sqrt{150}}{\sqrt{3}} - \frac{1}{\sqrt{3}}$ | $-\frac{36}{\sqrt{2}} = -\sqrt{2}$                                                                                         | (                                                    | c.a.o.)  | B1<br>B1                         |

3. (a) 
$$\frac{dy}{dx} = 2x - 8$$

(an attempt to differentiate, at least one non-zero term correct) M1 An attempt to substitute x = 6 in candidate's expression for  $\frac{dy}{dx}$  m1

Value of  $\frac{dy}{dx}$  at P = 4 (c.a.o.) A1

Gradient of normal =  $\frac{-1}{\text{candidate's value for } \frac{\text{dy}}{\text{dx}}}$  m1

Equation of normal to C at P:  $y-2=-\frac{1}{4}(x-6)$  (or equivalent) (f.t. candidate's value for  $\frac{dy}{dx}$  provided M1 and both m1's awarded) A1

(b) Putting candidate's expression for 
$$\frac{dy}{dx} = 2$$
 M1

x-coordinate of Q = 5

y-coordinate of Q = -1 A1 c = -11 A1

(f.t. candidate's expression for  $\frac{dy}{dx}$  and at most one error in the

enumeration of the coordinates of Q for all three A marks provided both M1's are awarded)

4. (a) 
$$(1+x)^6 = 1 + 6x + 15x^2 + 20x^3 + \dots$$
  
All terms correct B2  
If B2 not awarded, award B1 for three correct terms

(b) An attempt to substitute 
$$x = 0.1$$
 in the expansion of part (a)

(f.t. candidate's coefficients from part (a))

1.1<sup>6</sup>  $\approx 1 + 6 \times 0.1 + 15 \times 0.01 + 20 \times 0.001$ 

(At least three terms correct, f.t. candidate's coefficients from part (a))

A1

1.1<sup>6</sup>  $\approx 1.77$ 

(c.a.o.) A1

5. (a) 
$$a = 4$$
 B1 B1  $c = 7$  B1

(b) An attempt to substitute 1 for x in an appropriate quadratic expression

(f.t. candidate's value for b) M1

Greatest value of 
$$\frac{1}{4x^2 - 8x + 29} = \frac{1}{25}$$
 (c.a.o.) A1

**6.** An expression for 
$$b^2 - 4ac$$
, with at least two of a, b, c correct M1

$$b^{2} - 4ac = (2k)^{2} - 4 \times (k-1) \times (7k-4)$$
 A1

Putting 
$$b^2 - 4ac < 0$$
 m1

$$6k^2 - 11k + 4 > 0 (convincing) A1$$

Finding critical values 
$$k = \frac{1}{2}$$
,  $k = \frac{4}{3}$  B1

A statement (mathematical or otherwise) to the effect that

$$k < \frac{1}{2}$$
 or  $k > \frac{4}{3}$  (or equivalent)

Deduct 1 mark for each of the following errors

the use of non-strict inequalities

the use of the word 'and' instead of the word 'or'

7. (a) 
$$y + \delta y = -3(x + \delta x)^2 + 8(x + \delta x) - 7$$
 B1  
Subtracting y from above to find  $\delta y$  M1

$$\delta y = -6x\delta x - 3(\delta x)^2 + 8\delta x$$
 A1

Dividing by 
$$\delta x$$
 and letting  $\delta x \to 0$  M1

$$\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = -6x + 8$$
 (c.a.o.) A1

(b) 
$$\frac{dy}{dx} = 9 \times \frac{5}{4} \times x^{1/4} - 8 \times -\frac{1}{3} \times x^{-4/3}$$
 B1, B1

#### 8. showing that f(2) = 0Either:

Or: trying to find 
$$f(r)$$
 for at least two values of  $r$  M1

$$f(2) = 0 \Rightarrow x - 2$$
 is a factor

$$f(x) = (x-2)(6x^2 + ax + b)$$
 with one of a, b correct M1

$$f(x) = (x-2)(6x^2 + ax + b)$$
 with one of a, b correct  
 $f(x) = (x-2)(6x^2 - x - 2)$  A1

$$f(x) = (x-2)(3x-2)(2x+1)$$
 (f.t. only  $6x^2 + x - 2$  in above line) A1

$$x = 2, \frac{2}{3}, -\frac{1}{2}$$
 (f.t. for factors  $3x \pm 2, 2x \pm 1$ ) A1

#### Special case

Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 4 marks

**9.** (a) (i)



Concave down curve with y-coordinate of maximum = 2 x-coordinate of maximum = -1 B1

Both points of intersection with *x*-axis

(ii)



Concave up curve with x-coordinate of minimum = 3 B1 y-coordinate of minimum = -4 B1 Both points of intersection with x-axis B1

(b) x = 3 (c.a.o.) B1

**10.** (a) 
$$\frac{dy}{dx} = 3x^2 + 18x + 27$$
 B1

Putting derived 
$$\frac{dy}{dx} = 0$$
 M1

$$3(x+3)^2 = 0 \Rightarrow x = -3$$
 (c.a.o) A1

$$x = -3 \Rightarrow y = 4 \tag{c.a.o} A1$$

### (b) Either:

An attempt to consider value of 
$$\frac{dy}{dx}$$
 at  $x = -3^-$  and  $x = -3^+$  M1

$$\frac{dy}{dx}$$
 has same sign at  $x = -3^-$  and  $x = -3^+ \Rightarrow (-3, 4)$  is a

## Or:

An attempt to find value of 
$$\frac{d^2y}{dx^2}$$
 at  $x = -3$ ,  $x = -3^-$  and  $x = -3^+$  M1

$$\frac{d^2y}{dx^2} = 0$$
 at  $x = -3$  and  $\frac{d^2y}{dx^2}$  has different signs at  $x = -3^-$  and  $x = -3^+$ 

$$\Rightarrow$$
 (-3, 4) is a point of inflection A1

#### Or

An attempt to find the value of y at 
$$x = -3^-$$
 and  $x = -3^+$  M1  
Value of y at  $x = -3^- < 4$  and value of y at  $x = -3^+ > 4 \Rightarrow (-3, 4)$  is a point of inflection

#### Or:

An attempt to find values of 
$$\frac{d^2y}{dx^2}$$
 and  $\frac{d^3y}{dx^3}$  at  $x = -3$  M1

$$\frac{d^2y}{dx^2} = 0$$
 and  $\frac{d^3y}{dx^3} \neq 0$  at  $x = -3 \Rightarrow (-3, 4)$  is a point of inflection A1

(c)



G1

```
1.
       (a)
                                     0.301029995
               1
               1.5
                                     0.544068044
               2
                                     0.698970004
               2.5
                                     0.812913356
                                     0.903089987
                                                            (5 values correct)
                                                                                  B2
               (If B2 not awarded, award B1 for either 3 or 4 values correct)
               Correct formula with h = 0.5
                                                                                  M1
               I \approx 0.5 \times \{0.301029995 + 0.903089987\}
                                   +2(0.544068044+0.698970004+0.812913356)
               I \approx 5.31602279 \times 0.5 \div 2
               I ≈ 1·329005698
               I \approx 1.329
                                                            (f.t. one slip)
                                                                                  A1
               Note: Answer only with no working earns 0 marks
```

**Special case** for candidates who put h = 0.4

| 1   | 0.301029995 |                  |
|-----|-------------|------------------|
| 1.4 | 0.505149978 |                  |
| 1.8 | 0.643452676 |                  |
| 2.2 | 0.748188027 |                  |
| 2.6 | 0.832508912 |                  |
| 3   | 0.903089987 | (all values corr |

3 0.903089987 (all values correct) B1

M1

$$I \approx \underbrace{0.4}_{2} \times \{0.301029995 + 0.903089987 + 2(0.505149978 + 0.643452676 + 0.748188027 + 0.832508912))$$

 $I \approx 6.662719168 \times 0.4 \div 2$ 

Correct formula with h = 0.4

 $I \approx 1.332543834$ 

 $I \approx 1.333$  (f.t. one slip) A1

#### Note: Answer only with no working earns 0 marks

(b) 
$$\int_{1}^{3} \log_{10} (3x - 1)^2 dx \approx 2.658$$
 (f.t. candidate's answer to (a)) B1

2. 
$$(a)$$
  $4\cos^2\theta + 1 = 4(1-\cos^2\theta) - 2\cos\theta$ 

(correct use of  $\sin^2 \theta = 1 - \cos^2 \theta$ ) M1

An attempt to collect terms, form and solve quadratic equation in  $\cos \theta$ , either by using the quadratic formula or by getting the expression into the form  $(a\cos\theta + b)(c\cos\theta + d)$ ,

with  $a \times c =$  candidate's coefficient of  $\cos^2 \theta$  and  $b \times d =$  candidate's m1

$$8\cos^{2}\theta + 2\cos\theta - 3 = 0 \Rightarrow (2\cos\theta - 1)(4\cos\theta + 3) = 0$$
  
$$\Rightarrow \cos\theta = \frac{1}{2}, \qquad \cos\theta = -\frac{3}{4} \qquad (c.a.o.) \quad A1$$

$$\theta = 60^{\circ}, 300^{\circ}$$
 B1

$$\theta = 138.59^{\circ}, 221.41^{\circ}$$
 B1 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

> $\cos \theta = +, -, \text{ f.t. for 3 marks}, \cos \theta = -, -, \text{ f.t. for 2 marks}$  $\cos \theta = +, +, \text{ f.t. for } 1 \text{ mark}$

(b) 
$$\alpha + 40^{\circ} = 45^{\circ}$$
,  $135^{\circ}$ ,  $\Rightarrow \alpha = 5^{\circ}$ ,  $95^{\circ}$  (at least one value of  $\alpha$ ) B1  $\alpha - 35^{\circ} = 60^{\circ}$ ,  $120^{\circ}$ ,  $\Rightarrow \alpha = 95^{\circ}$ ,  $155^{\circ}$  (at least one value of  $\alpha$ ) B1  $\alpha = 95^{\circ}$  (c.a.o.) B1

(c) Correct use of 
$$\sin \phi = \tan \phi$$
 (o.e.) M1  $\cos \phi$ 

$$\tan \phi = \frac{10}{7}$$

$$\phi = 55^{\circ}, 235^{\circ}$$
(f.t tan  $\phi = a$ )
B1

$$\phi = 55^{\circ}, 235^{\circ}$$
 (f.t tan  $\phi = a$ )

3. (a) 
$$\frac{y}{\frac{4}{5}} = \frac{x}{\frac{8}{17}}$$
 (o.e.) (correct use of sine rule) M1  
 $y = 1.7x$  (convincing) A1

(b) 
$$10 \cdot 5^2 = x^2 + y^2 - 2 \times x \times y \times (^{-13}/_{85})$$
 (correct use of the cosine rule) M1

Substituting 1.7x for y in candidate's equation of form

$$10.5^{2} = x^{2} + y^{2} \pm 2 \times x \times y \times {}^{13}/_{85}$$
 M1

$$10 \cdot 5^2 = x^2 + y^2 \pm 2 \times x \times y \times {}^{13}/_{85}$$

$$10 \cdot 5^2 = x^2 + 2 \cdot 89 \, x^2 + 0 \cdot 52 x^2$$
(o.e.)
A1
$$x = 5$$

(f.t. candidate's equation for  $x^2$  provided both M's awarded) **A**1

**4.** (a) 
$$S_n = a + [a + d] + ... + [a + (n-1)d]$$

(at least 3 terms, one at each end) B1

$$S_n = [a + (n-1)d] + [a + (n-2)d] + \ldots + a$$

In order to make further progress, the two expressions for  $S_n$  must contain at least three pairs of terms, including the first pair, the last pair and one other pair of terms

Either:

$$2S_n = [a + a + (n-1)d] + [a + a + (n-1)d] + \dots + [a + a + (n-1)d]$$

$$2S_n = [a + a + (n-1)d] \qquad n \text{ times} \qquad M1$$

 $2S_n = n[2a + (n-1)d]$ 

$$S_n = \underbrace{n[2a + (n-1)d]}_{2}$$
 (convincing) A1

(b) 
$$\underline{n}[2 \times 3 + (n-1) \times 2] = 360$$
 M1

Rewriting above equation in a form ready to be solved

$$2n^2 + 4n - 720 = 0$$
 or  $n^2 + 2n - 360 = 0$  or  $n(n+2) = 360$  A1

$$n = 18$$
 (c.a.o.) A1

(c) 
$$a + 9d = 7 \times (a + 2d)$$
 B1

$$a + 7d + a + 8d = 80$$
 B1

An attempt to solve the candidate's linear equations simultaneously by eliminating one unknown M1

$$a = -5$$
,  $d = 6$  (both values) (c.a.o.) A1

5. (a) 
$$ar + ar^2 = -216$$
 B1 B1 B1

A correct method for solving the candidate's equations simultaneously multiplying the first equation by  $r^3$  and subtracting e,g

or eliminating a and 
$$(1 + r)$$
 M1  
 $-216r^3 = 8$  (o.e.)

$$r = -\frac{1}{3}$$
 (convincing) A1

(b) 
$$a \times (-\frac{1}{3}) \times (1-\frac{1}{3}) = -216 \Rightarrow a = 972$$
 B1

 $S_{\infty} = \frac{972}{1 - (-1/3)}$ (correct use of formula for  $S_{\infty}$ ,

$$1 - (-\frac{1}{3})$$
 f.t. candidate's derived value for a) M1

 $S_{\infty} = 729$ (f.t. candidate's derived value for a) **A**1

**6.** (a) 
$$5 \times \frac{x^{1/4}}{1/4} - 7 \times \frac{x^{3/2}}{3/2} + c$$
 B1, B1

(-1 if no constant term present)

- $16 x^2 = x + 10$ (i) (b) M1An attempt to rewrite and solve quadratic equation in x, either by using the quadratic formula or by getting the expression into the form (x + a)(x + b), with  $a \times b =$  candidate's constant m1 $(x-2)(x+3) = 0 \Rightarrow x = 2, -3$ (both values, c.a.o.) **A**1
  - y = 12, y = 7(both values, f.t. candidate's x-values) A1
  - (ii) Use of integration to find the area under the curve M1 $\int 16 dx = 16x$ ,  $\int x^2 dx = (1/3)x^3$ , (correct integration) **B**1 Correct method of substitution of candidate's limits m1

$$[16x - (1/3)x^3]_{-3}^2 = (32 - 8/3) - (-48 - (-9)) = 205/3$$

Use of a correct method to find the area of the trapezium (f.t. candidate's coordinates for A, B) Use of candidate's values for  $x_A$  and  $x_B$  as limits and trying to find total area by subtracting area of trapezium from area under curve m1Shaded area = 205/3 - 95/2 = 125/6**A**1 (c.a.o.)

#### 7. **Either:** (a)

 $(5x/4 - 2) \log_{10} 3 = \log_{10} 7$ (taking logs on both sides and using the power law) M1  $5x = (\log_{10} 7 + 2\log_{10} 3)$ **A**1 4  $\log_{10} 3$ 

x = 3.017(f.t. one slip, see below) A<sub>1</sub>

Or:

 $5x/4 - 2 = \log_3 7$ (rewriting as a log equation) M1  $5x/4 = \log_3 7 + 2$ **A**1

x = 3.017(f.t. one slip, see below) **A**1

Note: an answer of x = -0.183 from  $5x = (log_{10}7 - 2log_{10}3)$ 

earns M1 A0 A1

an answer of x = 0.183 from  $\underline{5}x = (2 \log_{10} 3 - \log_{10} 7) \log_{10} 3$ 

earns M1 A0 A1

#### Note: Answer only with no working earns 0 marks

- $b = a^5$ (b) (i) (relationship between log and power) **B**1  $a = b^{1/5}$ (ii) (the laws of indices) **B**1
  - $\log_b a = 1/5$ (relationship between log and power) **B**1

8. (a) (i) A correct method for finding the length of AB M1 AB = 20 A1
Sum of radii = distance between centres,  $\therefore \text{ circles touch}$  A1
(ii) Gradient AP(BP)(AB) = inc in y M1

Gradient  $AP = \frac{9-5}{-2-1} = \frac{-4}{3}$  (o.e) A1

Use of  $m_{\text{tan}} \times m_{\text{rad}} = -1$  M1 Equation of common tangent is: v = 5 = 3(r - 1)

 $y - 5 = \underline{3}(x - 1)$  (o.e)

(f.t. one slip provided both M's are awarded) A1

(b) Either:

Either:
An attempt to rewrite the equation of C with l.h.s. in the form  $(x-a)^2 + (y-b)^2 \qquad M1$   $(x+2)^2 + (y-3)^2 = -7 \qquad A1$ Impossible, since r.h.s. must be positive  $(=r^2)$ Or:  $g = 2, f = -3, c = 20 \text{ and an attempt to use } r^2 = g^2 + f^2 - c \qquad M1$   $r^2 = -7 \qquad A1$ Impossible, since  $r^2$  must be positive

- 9. (a) (i) Area of sector  $POQ = \frac{1}{2} \times r^2 \times 0.9$  B1 (ii) Length of  $PS = r \times \tan(0.9)$  B1 (iii) Area of triangle  $POS = \frac{1}{2} \times r \times r \times \tan(0.9)$ (f.t. candidate's expression in r for the length of PS) B1
  - (b)  $\frac{1}{2} \times r \times r \times \tan(0.9) \frac{1}{2} \times r^2 \times 0.9 = 95.22$ (f.t. candidate's expressions for area of sector and area of triangle, at least one correct) M1  $r^2 = \frac{2 \times 95.22}{(1.26 - 0.9)}$ (o.e.) (c.a.o.) A1 r = 23 (f.t. one numerical slip) A1

**C3** 

1. (a) 0 2.197224577  
0.75 2.314217179  
1.5 2.524262696  
2.25 2.861499826  
3 3.335254744 (5 values correct) B2  
(If B2 not awarded, award B1 for either 3 or 4 values correct)  
Correct formula with 
$$h = 0.75$$
 M1  
 $I \approx 0.75 \times \{2.197224577 + 3.335254744$   
 $3 + 4(2.314217179 + 2.861499826) + 2(2.524262696)\}$   
 $I \approx 31.28387273 \times 0.75 \div 3$   
 $I \approx 7.820968183$   
 $I \approx 7.82$  (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

(b) 
$$\int_{0}^{3} \ln(16 + 2e^{x}) dx = \int_{0}^{3} \ln(8 + e^{x}) dx + \int_{0}^{3} \ln 2 dx$$
 M1  
$$\int_{0}^{3} \ln(16 + 2e^{x}) dx = 7.82 + 2.08 = 9.90$$
 (f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

2. 
$$8(\sec^2\theta - 1) - 5\sec^2\theta = 7 + 4\sec\theta$$
. (correct use of  $\tan^2\theta = \sec^2\theta - 1$ ) M1  
An attempt to collect terms, form and solve quadratic equation in  $\sec\theta$ , either by using the quadratic formula or by getting the expression into the form  $(a \sec\theta + b)(c \sec\theta + d)$ , with  $a \times c = \text{candidate}$ 's coefficient of  $\sec^2\theta$  and  $b \times d = \text{candidate}$ 's constant m1  $3 \sec^2\theta - 4 \sec\theta - 15 = 0 \Rightarrow (3 \sec\theta + 5)(\sec\theta - 3) = 0$   $\Rightarrow \sec\theta = -\frac{5}{2}$ ,  $\sec\theta = 3$   $\Rightarrow \cos\theta = -\frac{3}{2}$ ,  $\cos\theta = \frac{1}{2}$  (c.a.o.) A1  $\Rightarrow \cos\theta = 126.87^\circ$ , 233.13° B1 B1  $\theta = 70.53^\circ$ , 289.47°

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

 $\cos \theta = +, -, \text{ f.t. for 3 marks}, \cos \theta = -, -, \text{ f.t. for 2 marks}$  $\cos \theta = +, +, \text{ f.t. for 1 mark}$ 

3. (a) 
$$\frac{d(y^4) = 4y^3 \frac{dy}{dx}}{dx}$$
 B1  
 $\frac{d(8xy^2) = (8x)(2y)\frac{dy}{dy} + 8y^2}{dx}$  B1  
 $\frac{d(2x^2) = 4x, \ d(9) = 0}{dx}$  B1  
 $\frac{dy = \frac{x - 2y^2}{y^3 + 4xy}$  (convincing) (c.a.o.) B1

(b) 
$$\underline{dy} = 0 \Rightarrow x = 2y^2$$

Substitute  $2y^2$  for  $x$  in equation of  $C$ 
 $9y^4 + 9 = 0$ 

(o.e.) (c.a.o.)

 $9y^4 + 9 > 0$  for any real  $y$  (o.e.) and thus no such point exists

A1

4. candidate's x-derivative = 
$$2e^t$$
 B1
candidate's y-derivative =  $-8e^{-t} + 3e^t$  B1
$$\frac{dy}{dx} = \frac{\text{candidate's y-derivative}}{\text{candidate's x-derivative}}$$

$$\frac{dy}{dx} = \frac{-8e^{-t} + 3e^t}{2e^t}$$
(o.e.) (c.a.o.) A1

Putting candidate's  $\underline{dy} = -1$ , rearranging and obtaining either an equation in

**both** 
$$e^t$$
 and  $e^{-t}$ , or an equation in  $e^{2t}$ , or an equation in  $e^{-2t}$ . M1  
Either  $e^{2t} = \frac{8}{5}$  or  $e^{-2t} = \frac{5}{8}$ 

(f.t. one numerical slip in candidate's derived expression for 
$$\frac{dy}{dx}$$
) A1  
 $t = 0.235$  (c.a.o.) A1

**A**1

5. (a) 
$$\frac{d[\ln (3x^2 - 2x - 1)]}{dx} = \frac{ax + b}{3x^2 - 2x - 1}$$
 (including  $a = 0, b = 1$ ) M1
$$\frac{d[\ln (3x^2 - 2x - 1)]}{dx} = \frac{6x - 2}{3x^2 - 2x - 1}$$
 A1
$$6x - 2 = 8x(3x^2 - 2x - 1)$$
 (o.e.) (f.t. candidate's  $a, b$ ) A1
$$12x^3 - 8x^2 - 7x + 1 = 0$$
 (convincing) A1

(b) 
$$x_0 = -0.6$$
  
 $x_1 = -0.578232165$  ( $x_1$  correct, at least 4 places after the point) B1  
 $x_2 = -0.582586354$   
 $x_3 = -0.581770386$   
 $x_4 = -0.581925366 = -0.5819$  ( $x_4$  correct to 4 decimal places) B1  
Let  $g(x) = 12x^3 - 8x^2 - 7x + 1$   
An attempt to check values or signs of  $g(x)$  at  $x = -0.58185$ ,  
 $x = -0.58195$  M1  
 $g(-0.58185) = 7.35 \times 10^{-4}$ ,  $g(-0.58195) = -7.15 \times 10^{-4}$  A1  
Change of sign  $\Rightarrow \alpha = -0.5819$  correct to four decimal places

6. (a) (i) 
$$\frac{dy}{dx} = -\frac{1}{4} \times (9 - 4x^5)^{-5/4} \times f(x) \qquad (f(x) \neq 1)$$
 M1
$$\frac{dy}{dx} = -\frac{1}{4} \times (9 - 4x^5)^{-5/4} \times (-20x^4)$$

$$\frac{dy}{dx} = 5x^4 \times (9 - 4x^5)^{-5/4}$$
 A1

$$\underline{dy} = -\underline{1} \times (9 - 4x^5)^{-5/4} \times (-20x^4)$$

$$\frac{dy}{dr} = \frac{1}{4} \wedge (y + x)$$

$$\frac{dy}{dx} = 5x^4 \times (9 - 4x^5)^{-5/4}$$
 A1

(ii) 
$$\frac{dy}{dx} = \frac{(7 - x^3) \times f(x) - (3 + 2x^3) \times g(x)}{(7 - x^3)^2} \qquad (f(x), g(x) \neq 1) \qquad M1$$

$$\underline{dy} = (7 - x^3) \times 6x^2 - (3 + 2x^3) \times (-3x^2)$$

$$\frac{dx}{dx}$$
  $(7-x^3)^2$ 

$$\frac{1y}{1x} = \frac{51x^2}{(7 - x^3)^2}$$
 (c.a.o.) A1

(*b*) (i)



G1

(ii)  $x = \sin y \Rightarrow \underline{dx} = \cos y$ **B**1

$$\underline{dx} = \pm \sqrt{(1 - \sin^2 y)}$$
 B1

The +ive sign is chosen because the graph shows the gradient to be positive E1

$$\underline{\mathbf{d}x} = \sqrt{(1 - x^2)}$$
 B1

dy

$$\frac{dy}{dx} = \frac{1}{\sqrt{(1-x^2)}}$$
B1

7. (a) (i) 
$$\int \cos(2-5x) \, dx = k \times \sin(2-5x) + c$$
 (k = 1, \frac{1}{5}, -5, -\frac{1}{5}) \ M1 \int \int \cos (2 - 5x) \, dx = -\frac{1}{5} \times \sin (2 - 5x) + c \quad A1 \int \int \frac{4}{e^{3x-2}} \, dx = k \times 4 \times e^{2-3x} + c \quad (k = 1, -3, \frac{1}{3} - \frac{1}{3}) \quad M1 \int \frac{4}{e^{3x-2}} \, dx = -\frac{4}{3} \times e^{2-3x} + c \quad A1 \int \frac{5}{1/6x-3} \, dx = k \times 5 \times \ln \left| \frac{1}{6} \times - 3 \right| + c \quad (k = 1, \frac{1}{6}, \frac{6}{6}) \quad M1

(ii) 
$$\int \frac{4}{e^{3x-2}} dx = k \times 4 \times e^{2-3x} + c \qquad (k = 1, -3, \frac{1}{3} - \frac{1}{3}) \quad M1$$
$$\int \frac{4}{3x-2} dx = -\frac{4}{3} \times e^{2-3x} + c \qquad A1$$

(iii) 
$$\int_{1/6x-3}^{5} dx = k \times 5 \times \ln | {}^{1}/_{6}x - 3 | + c \qquad (k = 1, {}^{1}/_{6}, \mathbf{6}) \qquad M1$$
$$\int_{1/6x-3}^{5} dx = 30 \times \ln | {}^{1}/_{6}x - 3 | + c \qquad A1$$

Note: The omission of the constant of integration is only penalised once.

(b) 
$$\int (4x+1)^{1/2} dx = k \times \underbrace{(4x+1)^{3/2}}_{3/2} \qquad (k=1,4,\frac{1}{4}) \qquad M1$$
$$\int_{2}^{6} (4x+1)^{1/2} dx = \left[\frac{1}{4} \times \underbrace{(4x+1)^{3/2}}_{3/2}\right]_{2}^{6} \qquad A1$$

A correct method for substitution of limits in an expression of the form  $m \times (4x + 1)^{3/2}$ M1

$$\int_{2}^{6} (4x+1)^{1/2} dx = \underline{125} - \underline{27} = \underline{98} = 16.33$$

(f.t. only for solutions of  $\frac{392}{6}$  and  $\frac{1568}{6}$  from k = 1, 4 respectively) A1

Note: Answer only with no working shown earns 0 marks

- 8. (a) Choice of a, b, with one positive and one negative and one side correctly evaluated M1Both sides of identity evaluated correctly **A**1
  - (*b*) Trying to solve 3x - 2 = 7xM1Trying to solve 3x - 2 = -7xM1x = -0.5, x = 0.2(both values) **A**1 (c.a.o.)

Alternative mark scheme

$$(3x-2)^2 = 7^2 \times x^2$$
 (squaring both sides) M1  
 $40x^2 + 12x - 4 = 0$  (o.e.) (c.a.o.) A1  
 $x = -0.5, x = 0.2$  (both values, f.t. one slip in quadratic) A1

**9.** (a) 
$$f(x) = (x-4)^2 - 9$$
 B1

(b) 
$$y = (x-4)^2 - 9$$
 and an attempt to isolate  $x$   
(f.t. candidate's expression for  $f(x)$  of form  $(x+a)^2 + b$ , with  $a, b$   
derived) M1  
 $x = (\pm)\sqrt{(y+9)} + 4$   
(f.t. candidate's expression for  $f(x)$  of form  $(x+a)^2 + b$ , with  $a, b$ 

derived) A1  
$$x = -\sqrt{(y+9)} + 4$$
 (o.e.) (c.a.o.) A1

$$x = -\sqrt{(y+9)} + 4$$
 (o.e.) (c.a.o.) A1  
 $f^{-1}(x) = -\sqrt{(x+9)} + 4$  (o.e.)

(f.t. only incorrect choice of sign in front of the  $\sqrt{\text{sign and candidate's}}$ expression for f(x) of form  $(x + a)^2 + b$ , with a, b derived)

**10.** (a) 
$$R(g) = [2k - 4, \infty)$$
 B1

(b) (i) 
$$2k-4 \ge -2$$
 M1  
 $k \ge 1$  ( $\Rightarrow$  least value of  $k$  is 1)  
(f.t. candidate's  $R(g)$  provided it is of form  $[a, \infty)$  A1

(ii) 
$$fg(x) = (kx-4)^2 + k(kx-4) - 8$$
 B1

(iii) 
$$(3k-4)^2 + k(3k-4) - 8 = 0$$
 (substituting 3 for x in candidate's expression for  $fg(x)$  and putting equal to 0) M1

Either  $12k^2 - 28k + 8 = 0$  or  $6k^2 - 14k + 4 = 0$  or  $3k^2 - 7k + 2 = 0$  (c.a.o.) A1  $k = \frac{1}{3}$ , 2 (f.t. candidate's quadratic in k) A1  $k = 2$  (c.a.o.) A1

(c.a.o.)

**A**1

1. 
$$9x^{2} - 5x \times 2y \underline{dy} - 5y^{2} + 8y^{3} \underline{dy} = 0$$

$$dx \qquad dx \qquad \left[ -5x \times 2y \underline{dy} - 5y^{2} \right] \qquad B1$$

$$\begin{bmatrix} 9x^{2} + 8y^{3} \underline{dy} \\ dx \end{bmatrix} \qquad B1$$
Either 
$$\underline{dy} = \underbrace{9x^{2} - 5y^{2}}_{dx} \text{ or } \underline{dy} = \underline{1}_{dx} \qquad \text{(o.e.)} \qquad \text{(c.a.o.)} \qquad B1$$

Either 
$$\frac{dy}{dx} = \frac{9x^2 - 5y^2}{10xy - 8y^3}$$
 or  $\frac{dy}{dx} = \frac{1}{4}$  (o.e.)

Attempting to substitute x = 1 and y = 2 in candidate's expression and the use of  $grad_{normal} \times grad_{tangent} = -1$ 

Equation of normal: y-2=-4(x-1)

f.t. candidate's value for  $\frac{dy}{dx}$ **A**1

 $f(x) \equiv \frac{A}{(x+1)^2} + \frac{B}{(x+1)} + \frac{C}{(x-4)}$ 2. (correct form) M1  $5x^2 + 7x + 17 \equiv A(x-4) + B(x+1)(x-4) + C(x+1)^2$ (correct clearing of fractions and genuine attempt to find coefficients) m1A = -3, C = 5, B = 0(all three coefficients correct) A2 (If A2 not awarded, award A1 for either 1 or 2 correct coefficients)

(b) 
$$\frac{5x^2 + 9x + 9}{(x+1)^2(x-4)} = \frac{5x^2 + 7x + 17}{(x+1)^2(x-4)} + \frac{2}{(x+1)^2}$$

$$\frac{5x^2 + 9x + 9}{(x+1)^2(x-4)} = \frac{-1}{(x+1)^2} + \frac{5}{(x-4)}$$
M1

(f.t. candidates values for A, B, C) **A**1

3. (a) 
$$\frac{2 \tan x}{1 - \tan^2 x} = 3 \cot x$$
 (correct use of formula for  $\tan 2x$ ) M1
$$\frac{2 \tan x}{1 - \tan^2 x} = \frac{3}{\tan x}$$
 (correct use of  $\cot x = \frac{1}{\tan x}$ ) M1
$$\tan^2 x = \frac{3}{5}$$
 (o.e.) A1
$$x = 37.76^\circ, 142.24^\circ$$
 (both values)
(f.t.  $a \tan^2 x = b$  provided both M1's are awarded) A1

(b) (i)  $R = 29$  B1
$$\cot^2 29 \sin \alpha = 20 \text{ or } \tan \alpha = \frac{20}{20} \text{ to } \text{ find } \alpha$$
(ii) Greatest value of  $\frac{1}{21 \sin \theta - 20 \cos \theta + 31} = \frac{1}{29 \times (\pm 1) + 31}$ 
(f.t. candidate's value for  $R$ ) M1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) M1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{2}$$
(f.t. candidate's value for  $R$ ) A1
$$\cot^2 x = \frac{1}{$$

M1

Note: Answer only with no working earns 0 marks

of form  $(ax - b\cos x + \underline{c}\sin 2x)$ 

Volume = 35

 $(a \neq 0, c \neq 0)$ 

(c.a.o.)

M1

**A**1

$$6\sqrt{1-2x} - \frac{1}{1+4x} = 5 - 2x - 19x^2 + \dots$$
(-1 each incorrect term) B2

Expansion valid for 
$$|x| < 1/4$$
 (o.e.)

candidate's x-derivative = 2 6. (a) candidate's v-derivative =  $15t^2$ (at least one term correct) and use of dy = candidate's y-derivativeM1 dx candidate's x-derivative  $dy = 15 t^2$ (o.e.) (c.a.o.) **A**1  $\mathrm{d}x$ Equation of tangent at P:  $y - 5p^3 = \frac{15}{2}p^2(x - 2p)$ 

(f.t. candidate's expression for 
$$\frac{dy}{dx}$$
) m1  
 $2y = 15 p^2 x - 20 p^3$  (convincing) A1

(b) Substituting 
$$p = 1$$
,  $x = 2q$ ,  $y = 5q^3$  in equation of tangent  $q^3 - 3q + 2 = 0$  (convincing) A1  
Putting  $f(q) = q^3 - 3q + 2$   
**Either**  $f(q) = (q - 1)(q^2 + q - 2)$  **or**  $f(q) = (q + 2)(q^2 - 2q + 1)$  M1

Either 
$$f(q) = (q-1)(q-1)(q+2)$$
 or  $q = 1, q = -2$  A1

7. (a) 
$$u = \ln 2x \Rightarrow du = 2 \times \frac{1}{2x} dx$$
 (o.e.) B1

$$dv = x^4 dx \Rightarrow v = \frac{1}{5}x^5$$
 (o.e.) B1

$$\int_{0}^{1} x^{4} \ln 2x \, dx = \ln 2x \times \frac{1}{5} x^{5} - \int_{0}^{1} \frac{1}{5} x^{5} \times \frac{1}{5} \, dx \qquad (o.e.)$$
 M1

$$\int_{0}^{1} x^{4} \ln 2x \, dx = \ln 2x \times \frac{1}{5} x^{5} - \int_{0}^{1} \frac{1}{5} x^{5} \times \frac{1}{5} \, dx \qquad (o.e.) \qquad M1$$

$$\int_{0}^{1} x^{4} \ln 2x \, dx = \ln 2x \times \frac{1}{5} x^{5} - \frac{1}{25} x^{5} + c \qquad (c.a.o.) \qquad A1$$

(b) 
$$\int \sqrt{(10\cos x - 1)\sin x} \, dx = \int k \times u^{1/2} \, du \quad (k = -\frac{1}{10}, \frac{1}{10} \text{ or } \pm 10) \quad M1$$
$$\int a \times u^{1/2} \, du = a \times \frac{u^{3/2}}{3/2}$$
B1

$$\int_{0}^{\pi/3} \sqrt{(10\cos x - 1)\sin x} \, dx = k \left[ \frac{u^{3/2}}{3/2} \right]_{0}^{4} \quad \text{or} \quad k \left[ \frac{(10\cos x - 1)^{3/2}}{3/2} \right]_{0}^{\pi/3}$$
B1

$$\int_{0}^{\pi/3} \sqrt{(10\cos x - 1)\sin x} \, dx = \frac{19}{15} = 1.27$$
 (c.a.o.) A1

**8.** (a) 
$$\frac{\mathrm{d}V}{\mathrm{d}t} = kV$$
 B1

(b) 
$$\int \frac{dV}{V} = \int k \, dt$$

$$\ln V = kt + c$$

$$V = e^{kt+c} = Ae^{kt}$$
(convincing) A1

$$V = e^{kt+c} = Ae^{kt}$$
 (convincing) A1

(c) (i) 
$$292 = Ae^{2k}$$
  
 $637 = Ae^{28k}$  (both values) B1  
Dividing to eliminate A M1  
 $\frac{637}{292} = e^{26k}$  A1  
 $k = \frac{1}{26} \ln \left[ \frac{637}{292} \right] = 0.03$  A1

(ii) 
$$A = 275$$
 B1

(iii) When 
$$t = 0$$
, initial value of investment = £275  
(f.t. candidate's derived value for A) B1

| 9. | (a)          | <b>p.</b> q = | :-18                                                                                                                  | B1    |
|----|--------------|---------------|-----------------------------------------------------------------------------------------------------------------------|-------|
|    |              |               | ectly substituting candidate's derived values in the formula                                                          | B1    |
|    |              | <b>p.</b> q = | $=  \mathbf{p}  \times  \mathbf{q}  \times \cos \theta$                                                               | M1    |
|    |              | $\theta = 1$  | 18° (c.a.o.)                                                                                                          | A1    |
|    | ( <i>b</i> ) | (i)           | Use of $CD = CO + OD$ and the fact that $OC = \underline{1}b$ and $\underline{2}$                                     |       |
|    |              |               | <b>OD</b> = 2 <b>a</b> , leading to printed answer <b>CD</b> = 2 <b>a</b> - $\frac{1}{2}$ <b>b</b>                    |       |
|    |              |               | (convincing                                                                                                           | g) B1 |
|    |              |               | Use of $\underline{1}\mathbf{b} + \lambda \mathbf{C}\mathbf{D}$ (o.e.) to find vector equation of $CD$                | M1    |
|    |              |               | Vector equation of <i>CD</i> : $\mathbf{r} = 2\lambda \mathbf{a} + \underline{1}(1 - \lambda)\mathbf{b}$              |       |
|    |              |               | $\frac{1}{2}$ (convincing)                                                                                            | A1    |
|    |              | (ii)          | Either:                                                                                                               |       |
|    |              |               | Either substituting $\frac{1}{3}$ for $\lambda$ in the vector equation of <i>CD</i>                                   |       |
|    |              |               | or substituting 2 for $\mu$ in the vector equation of $L$                                                             | M1    |
|    |              |               | At least one of these position vectors = $\frac{2\mathbf{a} + \mathbf{b}}{3}$                                         | A1    |
|    |              |               | Both position vectors = $\underline{2}\mathbf{a} + \underline{1}\mathbf{b} \Rightarrow$ this must be the position $3$ | ion   |
|    |              |               | vector of the point of intersection $E$                                                                               | A1    |
|    |              |               | Or:                                                                                                                   |       |
|    |              |               | $2\lambda = \mu$                                                                                                      |       |
|    |              |               | $\frac{1}{2}(1-\lambda) = \frac{1}{3}(\mu-1)$                                                                         |       |
|    |              |               | (comparing candidate's coefficients of <b>a</b> and <b>b</b> and an att                                               | tempt |
|    |              |               | to solve)                                                                                                             | M1    |
|    |              |               | $\lambda = \frac{1}{3}$ or $\mu = 2$                                                                                  | A1    |
|    |              |               | $\mathbf{OE} = \frac{2\mathbf{a}}{3} + \frac{1}{3}\mathbf{b}$ (convincing)                                            | A1    |
|    |              | (iii)         | <b>Either</b> : $E$ lies on $AB$ and is such that $AE : EB = 1 : 2$ (o                                                | o.e.) |
|    |              | (111)         | Or: $E$ is the point of intersection of $AB$ and $CD$                                                                 | B1    |

10. Squaring both sides we have

 $1 + 2\sin\theta\cos\theta > 2$ B1  $\sin 2\theta > 1$ **B**1 B1

Contradiction, since the sine of any angle  $\leq 1$ 

FP1

| Ques | Solution                                                                                                                              | Mark       | Notes        |
|------|---------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 1(a) | $f(x+h) - f(x) = \frac{1}{(x+h)^2} - \frac{1}{x^2}$ $= \frac{x^2 - (x+h)^2}{x^2(x+h)^2}$                                              | M1A1<br>A1 |              |
|      | $= \frac{x^2 - (x^2 + 2xh + h^2)}{x^2(x+h)^2}$ $= \frac{-2xh - h^2}{x^2(x+h)^2}$                                                      | A1         |              |
|      | $f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{\lim_{h \to 0} \frac{-2xh - h^2}{hx^2(x+h)^2}} = -\frac{2}{x^3}$               | M1<br>A1   |              |
| (b)  | $h \to 0 \ hx^{2}(x+h)^{2} \qquad x^{3}$ $\ln f(x) = x \ln \sec x$ $\frac{f'(x)}{f(x)} = \ln \sec x + \frac{x \sec x \tan x}{\sec x}$ | B1<br>B1B1 | B1 each side |
|      | $f'(x) = (\sec x)^{x} (\ln \sec x + x \tan x)$                                                                                        | B1         |              |
| 2(a) | $S_n = \sum_{r=1}^n r(r+3) = \sum_{r=1}^n r^2 + \sum_{r=1}^n 3r$ $= \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{2}$                       | M1<br>A1   |              |
|      | $= \frac{n(n+1)}{6} (2n+1+9)$ $= \frac{n(n+1)(n+5)}{3} \text{ or } \frac{n^3 + 6n^2 + 5n}{3} \text{ oe}$                              | m1<br>A1   |              |
| (b)  | 3                                                                                                                                     | M1<br>A1   |              |
|      | $= n + 3n \cdot (n + n \cdot 2)$ $= 2(n+1)$                                                                                           | A1         |              |
|      |                                                                                                                                       |            |              |
|      |                                                                                                                                       |            |              |

| Ques | Solution                                                                                        | Mark       | Notes                                 |
|------|-------------------------------------------------------------------------------------------------|------------|---------------------------------------|
| 3(a) | x + 2y + 4z = 3                                                                                 |            |                                       |
|      | x - y + 2z = 4                                                                                  |            |                                       |
|      | 4x - y + 10z = k                                                                                |            |                                       |
|      | Attempting to use row operations,                                                               | M1         |                                       |
|      | x + 2y + 4z = 3                                                                                 |            |                                       |
|      | 3y + 2z = -1                                                                                    | A1         |                                       |
|      | $9y + 6z = 12 - k$ Since the $3^{rd}$ equation is those times the $2^{rd}$                      | A1         |                                       |
|      | Since the 3 <sup>rd</sup> equation is three times the 2 <sup>nd</sup> equation, it follows that | M1         |                                       |
|      | $12 - k = -3 \; ; \; k = 15$                                                                    | A1         |                                       |
| (b)  | ŕ                                                                                               |            |                                       |
|      | Let $z = \alpha$                                                                                | M1         |                                       |
|      | $y = -\frac{(1+2\alpha)}{3}$                                                                    |            |                                       |
|      | 5                                                                                               | A1         |                                       |
|      | $x = \frac{11 - 8\alpha}{3}$                                                                    | A1         |                                       |
|      | (or equivalent)                                                                                 |            |                                       |
|      | (or equivalent)                                                                                 |            |                                       |
| 4    | 1+2i 1+i                                                                                        | M1         |                                       |
|      | EITHER $z = \frac{1+2i}{1-i} \times \frac{1+i}{1+i}$                                            |            |                                       |
|      | $1+2i+i+2i^2$                                                                                   | A1         |                                       |
|      | $= \frac{1+2i+i+2i^2}{1-i+i-i^2}$                                                               |            |                                       |
|      | $=\frac{-1+3i}{2}$                                                                              | A1         |                                       |
|      | <del>-</del>                                                                                    |            |                                       |
|      | $Mod(z) = \frac{\sqrt{10}}{2} \ (\sqrt{2.5}, 1.58)$                                             | B1         | FT their z                            |
|      | $V(\sqrt{2.5}, 1.56)$                                                                           |            |                                       |
|      | $Arg(z) = \tan^{-1}(-3) + \pi$                                                                  | M1A1       | Award M1A0 for tan <sup>-1</sup> (-3) |
|      | = 1.89 (108°)                                                                                   | WIIAI      | $(-1.25 \text{ or } -72^{\circ})$     |
|      |                                                                                                 |            |                                       |
|      | OR                                                                                              |            |                                       |
|      |                                                                                                 | B1         |                                       |
|      | $Mod(1+2i) = \sqrt{5}$                                                                          | B1         |                                       |
|      | $Mod(1-i) = \sqrt{2}$                                                                           |            |                                       |
|      |                                                                                                 | B1         |                                       |
|      | $\operatorname{Mod}\left(\frac{1+2i}{1-i}\right) = \sqrt{\frac{5}{2}}$                          | D1         | FT one incorrect mod                  |
|      | $Arg(1 + 2i) = tan^{-1} 2 = 1.107$                                                              | B1<br>B1   | 2 2 one mediteet mod                  |
|      | $Arg(1-i) = tan^{-1}(-1) = -0.785$                                                              | <b>D</b> 1 |                                       |
|      | _                                                                                               |            |                                       |
|      | $Arg\left(\frac{1+2i}{1-i}\right) = 1.107+0.785$                                                | D1         | FT one incorrect arg                  |
|      | = 1.89 (108°)                                                                                   | B1         | 1 Tone mediteet aig                   |
|      | \ /                                                                                             |            |                                       |
|      |                                                                                                 |            |                                       |
|      |                                                                                                 |            |                                       |

| Ques   | Solution                                                                                                                                                   | Mark     | Notes                            |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|
| 5(a)   | $\alpha + \beta + \gamma = -2$ , $\beta \gamma + \gamma \alpha + \alpha \beta = 2$ , $\alpha \beta \gamma = -3$                                            | B1       |                                  |
|        | $\beta \gamma \times \gamma \alpha + \beta \gamma \times \alpha \beta + \gamma \alpha \times \alpha \beta = \alpha \beta \gamma (\alpha + \beta + \gamma)$ | M1       | FT their first line if one error |
|        | $= -3 \times -2 = 6$                                                                                                                                       | A1       |                                  |
|        | $\beta \gamma \times \gamma \alpha \times \alpha \beta = (\alpha \beta \gamma)^2 = 9$                                                                      | M1A1     |                                  |
|        | The required equation is                                                                                                                                   |          |                                  |
|        | $x^3 - 2x^2 + 6x - 9 = 0$                                                                                                                                  | B1       | FT previous values               |
| (b)    | $\alpha^2 + \beta^2 + \gamma^2$                                                                                                                            |          |                                  |
|        | $= (\alpha + \beta + \gamma)^2 - 2(\beta \gamma + \gamma \alpha + \alpha \beta)$                                                                           | N/1      |                                  |
|        | $= 4 - 2 \times 2 = 0 \text{ (convincing)}$                                                                                                                | M1<br>A1 |                                  |
|        | $-4$ $2 \times 2 = 0$ (convincing)                                                                                                                         | AI       |                                  |
|        | The equation has 1 real root                                                                                                                               | B1       |                                  |
|        | Any valid reason, eg cubic equations have either 1                                                                                                         | B1       |                                  |
|        | or 3 real roots and since $\alpha^2 + \beta^2 + \gamma^2 = 0$ , not all                                                                                    | Di       |                                  |
|        | roots are real                                                                                                                                             |          |                                  |
|        |                                                                                                                                                            |          |                                  |
|        |                                                                                                                                                            |          |                                  |
|        |                                                                                                                                                            |          |                                  |
| 6(a)   | $Det(A) = \lambda (2 - \lambda) + 2 \times 4 + 3(-\lambda - 2)$                                                                                            | M1       |                                  |
|        | $= -\lambda^2 - \lambda + 2$                                                                                                                               | A1       |                                  |
|        | $= -\lambda - \lambda + 2$ A is singular when $-\lambda^2 - \lambda + 2 = 0$                                                                               | M1<br>A1 |                                  |
| (b)(i) | $\lambda = 1, -2$                                                                                                                                          | AI       |                                  |
| (0)(1) | _1 2 3 <del>]</del>                                                                                                                                        |          |                                  |
|        | $A = \begin{bmatrix} -1 & 2 & 3 \\ -1 & 1 & 1 \\ 2 & -1 & 2 \end{bmatrix}$                                                                                 |          |                                  |
|        | $A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$                                                                                                |          |                                  |
|        |                                                                                                                                                            |          |                                  |
|        | 3 4 -1                                                                                                                                                     |          | Award M1 if at least 5 cofactors |
|        | Cofactor matrix = $\begin{vmatrix} -7 & -8 & 3 \\ -1 & -2 & 1 \end{vmatrix}$ si                                                                            | M1A1     | are correct                      |
|        | $\begin{bmatrix} -1 & -2 & 1 \end{bmatrix}$                                                                                                                |          |                                  |
|        | $\begin{bmatrix} 3 & -7 & -1 \end{bmatrix}$                                                                                                                |          |                                  |
|        |                                                                                                                                                            | A 1      | N FYE                            |
|        | Adjugate matrix = $\begin{bmatrix} 3 & -7 & -1 \\ 4 & -8 & -2 \\ -1 & 3 & 1 \end{bmatrix}$                                                                 | A1       | No FT on cofactor matrix         |
| (ii)   |                                                                                                                                                            |          |                                  |
|        | Determinant = 2                                                                                                                                            | B1       |                                  |
|        | Inverse matrix = $\frac{1}{2}\begin{bmatrix} 3 & -7 & -1 \\ 4 & -8 & -2 \\ -1 & 3 & 1 \end{bmatrix}$                                                       | D1       |                                  |
|        | Inverse matrix = $\frac{1}{2} \begin{vmatrix} 4 & -8 & -2 \end{vmatrix}$                                                                                   | B1       | FT the adjugate or determinant   |
|        | $\begin{bmatrix} -1 & 3 & 1 \end{bmatrix}$                                                                                                                 |          |                                  |
|        |                                                                                                                                                            |          |                                  |
|        |                                                                                                                                                            |          |                                  |
|        |                                                                                                                                                            |          |                                  |
|        |                                                                                                                                                            |          |                                  |
|        |                                                                                                                                                            | <u> </u> |                                  |

| Ques | Solution                                                                                                                                                                                                                                                                                   | Mark           | Notes |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| 7(a) | Rotation matrix = $ \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} $                                                                                                                                                                                                   | B1             |       |
|      | Translation matrix = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                   | B1             |       |
|      | Ref matrix in y-axis = $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                | B1             |       |
|      | $T = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$                                                                            | M1             |       |
|      | $\begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ | A1             |       |
| (b)  | $= \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ EITHER                                                                                                                                                                                                            |                |       |
|      | The general point on the line is given by $(\lambda, 2\lambda + 1)$<br>Consider                                                                                                                                                                                                            | M1             |       |
|      | $\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda \\ 2\lambda + 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2\lambda - 2 \\ -\lambda + 2 \\ 1 \end{bmatrix}$                                                                                       | m1             |       |
|      | $x = -2\lambda - 2; y = -\lambda + 2$<br>Eliminating $\lambda$ ,                                                                                                                                                                                                                           | A1             |       |
|      | x - 2y + 6 = 0  oe OR                                                                                                                                                                                                                                                                      | A1             |       |
|      | Consider                                                                                                                                                                                                                                                                                   |                |       |
|      | $\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$                                                                                                                               | M1             |       |
|      | -y-1 = X, -x + 2 = Y $y = -1 - X, x = 2 - Y$ $y = 2x + 1  leading to  x - 2y + 6 = 0$                                                                                                                                                                                                      | A1<br>A1<br>A1 |       |
|      | y 2 1 leading to w 2y 1 0 = 0                                                                                                                                                                                                                                                              | 711            |       |

| Ques        | Solution                                                                                                                                                                                                                                                                                        | Mark                       | Notes                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|
| 8           | Putting $n = 1$ , the formula gives 1 which is the first term of the series so the result is true for $n = 1$ .  Assume formula is true for $n = k$ , ie $\left(\sum_{i=1}^{k} r \times 2^{r-1} = 1 + 2^{k} (k-1)\right)$                                                                       | B1<br>M1                   |                                                                                             |
|             | Consider, for $n = k + 1$ , $\sum_{r=1}^{k+1} r \times 2^{r-1} = \sum_{r=1}^{k} r \times 2^{r-1} + 2^{k} (k+1)$ $= 1 + 2^{k} (k-1) + 2^{k} (k+1)$ $= 1 + 2^{k+1} k$ Therefore true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$ , the result is proved by induction. | M1 A1 A1 A1 A1             | Award the final A1 only if a correct conclusion is made and the proof is correctly laid out |
| 9(a)<br>(b) | $u + iv = (x + iy)(x - 1 + iy)$ $= x(x - 1) - y^{2} + i(xy + xy - y)$ Equating real and imaginary parts, $u = x(x - 1) - y^{2}$ $v = y(2x - 1)$ Putting $y = -x$ , $u = x(x - 1) - x^{2} = -x$ $v = -x(2x - 1)$ Eliminating $x$ , $v = u(-2u - 1)  \text{cao (oe)}$                             | M1 A1 m1 A1 M1 A1 A1 A1 A1 | FT their expressions from (a)                                                               |

FP2

| Ques         | Solution                                                                                          | Mark       | Notes                               |
|--------------|---------------------------------------------------------------------------------------------------|------------|-------------------------------------|
| <b>1</b> (a) | $f(-x) = \frac{((-x)^2 + 1)}{-x((-x)^2 + 2)} = -f(x)$                                             | M1A1       |                                     |
|              | <i>M</i> (( <i>M</i> )                                                                            |            |                                     |
|              | Therefore $f$ is odd.                                                                             | A1         |                                     |
| <b>(b)</b>   | Let                                                                                               |            |                                     |
|              | $\frac{x^2+1}{x(x^2+2)} = \frac{A}{x} + \frac{Bx+C}{x^2+2} = \frac{A(x^2+2) + x(Bx+C)}{x(x^2+2)}$ | M1         |                                     |
|              |                                                                                                   |            |                                     |
|              | $A = \frac{1}{2}; B = \frac{1}{2}; C = 0$                                                         | A1A1A1     |                                     |
|              | $\begin{pmatrix} x^2 + 1 & 1 & x \end{pmatrix}$                                                   |            |                                     |
|              | $\left(\frac{x^2+1}{x(x^2+2)} = \frac{1}{2x} + \frac{x}{2(x^2+2)}\right)$                         |            |                                     |
| 2            | $u = \sin^2 x \Longrightarrow du = 2\sin x \cos x dx,$                                            | B1         |                                     |
|              | $[0,\pi/2] \to [0,1]$                                                                             | <b>B</b> 1 |                                     |
|              | $I = \int_{-2}^{1} \frac{\mathrm{d}u}{\sqrt{4 - u^2}}$                                            | M1         |                                     |
|              | $_{0}$ $\sqrt{4}-\mu$                                                                             |            |                                     |
|              | $= \left[\sin^{-1}(\frac{u}{2})\right]_{0}^{1}$                                                   | <b>A1</b>  | FT a multiple of this               |
|              | $= \pi/6 \text{ cao}$                                                                             | <b>A1</b>  |                                     |
| 3(a)         | Denoting the two functional expressions by $f_1, f_2$                                             |            |                                     |
|              | $f_1(0) = 1, f_2(0) = 1$                                                                          | M1A1       |                                     |
|              | Therefore $f$ is continuous when $x = 0$ .                                                        | A1         | No FT                               |
| <b>(b)</b>   | 22 24 24 24                                                                                       |            |                                     |
|              | $f_1'(x) = 2e^{2x}, f_2'(x) = 2(1+x)$                                                             | M1         |                                     |
|              | $f_1(0) = 2, f_2(0) = 2$                                                                          | A1         | No ET                               |
| 4(-)         | Therefore $f'$ is continuous when $x = 0$ .                                                       | A1         | No FT                               |
| <b>4(a)</b>  | $ z  = 2, \arg(z) = \pi/3$                                                                        | B1B1       |                                     |
| <b>(b)</b>   | Root $1 = \sqrt[3]{2} (\cos \pi/9 + i \sin \pi/9) = 1.184 + 0.431i$                               | M1A1       |                                     |
|              | $R2 = \sqrt[3]{2}(\cos 7\pi/9 + i\sin 7\pi/9) = -0.965 + 0.810i$                                  | M1A1       | Penalise lack of accuracy once only |
|              | $R3 = \sqrt[3]{2}(\cos 13\pi/9 + i\sin 13\pi/9) = -0.219 - 1.241i$                                | M1A1       | Omy                                 |
|              |                                                                                                   |            |                                     |
|              |                                                                                                   |            |                                     |
|              |                                                                                                   |            |                                     |
|              |                                                                                                   |            |                                     |
|              |                                                                                                   |            |                                     |
|              |                                                                                                   |            |                                     |
|              |                                                                                                   |            |                                     |
|              |                                                                                                   |            |                                     |

| Ques | Solution                                                                                                                                                      | Mark           | Notes                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
| 5    | The equation can be rewritten $2\sin 3\theta \cos 2\theta = \cos 2\theta$ $\cos 2\theta (2\sin 3\theta - 1) = 0$                                              | M1A1<br>A1     |                                       |
|      | Either $\cos 2\theta = 0$ ,                                                                                                                                   | M1             |                                       |
|      | $2\theta = 2n\pi \pm \frac{\pi}{2}$                                                                                                                           |                | Accept equivalent answers             |
|      | $	heta=n\pi\pmrac{\pi}{4}$                                                                                                                                   | <b>A1</b>      |                                       |
|      | Or $\sin 3\theta = 1/2$                                                                                                                                       | M1             |                                       |
|      | $3\theta = n\pi + (-1)^n \frac{\pi}{6}$                                                                                                                       | <b>A1</b>      |                                       |
|      | or $\theta = \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$                                                                                                          | <b>A1</b>      | Accept degrees throughout             |
|      |                                                                                                                                                               |                |                                       |
| 6    | Consider $\cos 6\theta + i \sin 6\theta = (\cos \theta + i \sin \theta)^6$                                                                                    | M1             |                                       |
|      | Expanding and equating imaginary terms,<br>$i\sin 6\theta = 6\cos^5 \theta (i\sin \theta) + 20\cos^3 \theta (i\sin \theta)^3 + 6\cos \theta (i\sin \theta)^5$ | m1<br>A1       |                                       |
|      | $\sin 6\theta = 6\cos^5\theta \sin\theta - 20\cos^3\theta \sin^3\theta$                                                                                       | A1             |                                       |
|      | $+6\cos\theta\sin^5\theta$ $\frac{\sin 6\theta}{\sin\theta} = 6\cos^5\theta - 20\cos^3\theta(1-\cos^2\theta)$                                                 |                |                                       |
|      | $+6\cos\theta(1-\cos^2\theta)^2$                                                                                                                              | <b>A1</b>      |                                       |
|      | = $32\cos^5\theta - 32\cos^3\theta + 6\cos\theta$<br>Letting $\theta \to \pi$ in the right hand side,<br>Limit = $-32 + 32 - 6 = -6$                          | A1<br>M1<br>A1 | FT their expression in the line above |
|      |                                                                                                                                                               |                |                                       |

| Ques    | Solution                                                                                         | Mark       | Notes                        |
|---------|--------------------------------------------------------------------------------------------------|------------|------------------------------|
| 7(a)(i) | The equation can be rewritten as                                                                 |            |                              |
|         | $\frac{x^2}{9} + \frac{y^2}{4} = 1$                                                              | M1         |                              |
|         | <i>y</i> <del>4</del>                                                                            | A1         |                              |
|         | In the usual notation, $a = 3$ , $b = 2$ .                                                       | AI         |                              |
|         | $e = \sqrt{\frac{a^2 - b^2}{a^2}} = \frac{\sqrt{5}}{3}$                                          | <b>A1</b>  | FT their <i>a</i> , <i>b</i> |
| (ii)    | y u S                                                                                            |            |                              |
| (b)(i)  | The foci are $(\pm ae,0)$ , ie $(\pm \sqrt{5},0)$ cao                                            | A1         |                              |
| (6)(1)  | Substituting the new expressions                                                                 |            |                              |
|         | Substituting the $x,y$ expressions,                                                              |            |                              |
|         | $4 \times 9\cos^2\theta + 9 \times 4\sin^2\theta = 36(\cos^2\theta + \sin^2\theta) = 36$         | B1         |                              |
|         | showing that $P$ lies on the ellipse.                                                            |            |                              |
|         |                                                                                                  |            |                              |
|         |                                                                                                  |            |                              |
| (ii)    | EITHER $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = -\frac{2\cos\theta}{3\sin\theta}$        |            |                              |
|         | $dx dx/d\theta 3\sin\theta$ OR                                                                   |            |                              |
|         |                                                                                                  | M1A1       |                              |
|         | $8x + 18y \frac{dy}{dx} = 0; \frac{dy}{dx} = -\frac{8x}{18y} = -\frac{2\cos\theta}{3\sin\theta}$ |            |                              |
|         | This equation of the tangent is                                                                  |            |                              |
|         | $y - 2\sin\theta = -\frac{2\cos\theta}{3\sin\theta}(x - 3\cos\theta)$                            |            |                              |
|         | $y - 2\sin\theta = -\frac{1}{3\sin\theta}(x - 3\cos\theta)$                                      | M1         |                              |
|         | $3y\sin\theta - 6\sin^2\theta = -2x\cos\theta + 6\cos^2\theta$                                   |            |                              |
|         | $3y\sin\theta + 2x\cos\theta = 6  \text{(convincing)}$                                           | <b>A1</b>  |                              |
| (iii)   |                                                                                                  |            |                              |
|         | ( 2                                                                                              |            |                              |
|         | Putting $y = 0$ , $R$ is the point $\left(\frac{3}{\cos \theta}, 0\right)$                       |            |                              |
|         |                                                                                                  | B1         |                              |
|         | Putting $x = 0$ , $S$ is the point $\left(0, \frac{2}{\sin \theta}\right)$                       | B1         |                              |
|         |                                                                                                  |            |                              |
|         | So <i>M</i> is the point $\left(\frac{3}{2\cos\theta}, \frac{1}{\sin\theta}\right)$              |            |                              |
|         |                                                                                                  | <b>B</b> 1 |                              |
|         | $x = \frac{3}{2\cos\theta}, y = \frac{1}{\sin\theta}$                                            |            |                              |
|         | Eliminating $\theta$ ,                                                                           | M1         |                              |
|         |                                                                                                  |            |                              |
|         | $\cos\theta = \frac{3}{2x}; \sin\theta = \frac{1}{y}$                                            | A1         |                              |
|         | $\frac{9}{4x^2} + \frac{1}{v^2} = \cos^2 \theta + \sin^2 \theta = 1$                             |            |                              |
|         | $\frac{1}{4x^2} + \frac{1}{y^2} - \cos \theta + \sin \theta - 1$                                 | A1         |                              |
|         |                                                                                                  |            |                              |

| Ques                  | Solution                                                                                                                                                                                                                                                                       | Mark                               | Notes                          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|
| 8(a)                  | (0,2); (-4,0); (2,0)                                                                                                                                                                                                                                                           | B1                                 |                                |
| (b)(i)<br>(ii)<br>(c) | $x = 4$ $f(x) = x + 6 + \frac{16}{x - 4}$ Oblique asymptote is $y = x + 6$ . $f'(x) = 1 - \frac{16}{(x - 4)^2} \text{ or } \frac{x^2 - 8x}{(x - 4)^2}$ At a stationary point, $f'(x) = 0$ $(x - 4)^2 = 16 \text{ or } x^2 - 8x = 0$ Stationary points are $(0, 2)$ ; $(8, 18)$ | B1<br>M1A1<br>A1<br>B1<br>M1<br>A1 | M1 any valid method            |
| (d)<br>(e)(i)<br>(ii) | $f(-7) = -27/11; f(3) = -7$ $f(S) = [-7,2]$ Solve $\frac{(x+4)(x-2)}{x-4} = -7$ $x^{2} + 9x - 36 = 0$ $x = -12, 3$ $f^{-1}(S) = [-12,3]$                                                                                                                                       | - G1 G1 G1 M1 A1 A1 A1 A1          | LH branch RH branch Asymptotes |

FP3

| Ques       | Solution                                                                                | Mark      | Notes                                                                  |
|------------|-----------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|
| 1(a)       |                                                                                         | M1        |                                                                        |
|            | Let $y = \sinh^{-1} x$ so that $x = \sinh y = \frac{e^y - e^{-y}}{2}$                   | 1411      |                                                                        |
|            | $e^{2y} - 2xe^y - 1 = 0$                                                                | A1        |                                                                        |
|            | $e^y = \frac{2x \pm \sqrt{4x^2 + 4}}{4x^2 + 4}$                                         | <b>A1</b> |                                                                        |
|            | $e^{y} = \frac{2x \pm \sqrt{4x^{2} + 4}}{2}$ $y = \ln\left(x + \sqrt{x^{2} + 1}\right)$ |           |                                                                        |
|            |                                                                                         |           |                                                                        |
| <i>a</i> > | rejecting the negative sign since $e^y > 0$                                             | A1        |                                                                        |
| <b>(b)</b> | Substituting for cosh2 <i>x</i> ,                                                       |           |                                                                        |
|            | $1 + 2\sinh^2 x = 2\sinh x + 5$                                                         | M1        |                                                                        |
|            | $\sinh^2 x - \sinh x - 2 = 0$                                                           | A1        |                                                                        |
|            | Solving for $\sinh x$ ,                                                                 | M1A1      |                                                                        |
|            | $ sinh x = -1, 2  x = ln(-1 + \sqrt{2}); ln(2 + \sqrt{5}) $                             | <b>A1</b> |                                                                        |
|            | $\lambda = \text{III}(1 + \sqrt{2}), \text{III}(2 + \sqrt{3})$                          | 1 1 1     |                                                                        |
|            |                                                                                         |           |                                                                        |
| 2(a)       | Consider                                                                                |           |                                                                        |
|            |                                                                                         | M1A1      |                                                                        |
|            | $\frac{d}{dx}(3-x)^{1/3} = \frac{-(3-x)^{-2/3}}{3}$                                     |           | All 1 2 1 1 2                                                          |
|            | = -0.2295 when $x = 1.25$                                                               | A1        | Allow any <i>x</i> between 1.2 and 1.3 M1A0A1 if negative sign omitted |
|            | The sequence converges because this is less than 1 in modulus.                          | A1        | FT the $f'$ value if M1 awarded                                        |
|            | $x_0 = 1.25$                                                                            |           |                                                                        |
|            | $x_1 = 1.205071132$                                                                     | M1A1      |                                                                        |
|            | $x_2 = 1.215296967$                                                                     |           |                                                                        |
|            | $x_3 = 1.212984693$                                                                     |           |                                                                        |
|            | $x_4 = 1.213508318$                                                                     |           |                                                                        |
|            | $x_5 = 1.21338978$                                                                      |           |                                                                        |
|            | $x_6 = 1.213416617$                                                                     | A1        |                                                                        |
|            |                                                                                         |           |                                                                        |
|            | $\alpha = 1.2134$ correct to 4 decimal places.                                          | A1        |                                                                        |
|            |                                                                                         |           |                                                                        |
|            |                                                                                         |           |                                                                        |
|            |                                                                                         |           |                                                                        |
|            |                                                                                         |           |                                                                        |
|            |                                                                                         |           |                                                                        |
|            |                                                                                         |           |                                                                        |
|            |                                                                                         |           |                                                                        |

| Ques       | Solution                                                                                                         | Mark | Notes           |
|------------|------------------------------------------------------------------------------------------------------------------|------|-----------------|
| <b>(b)</b> | The Newton-Raphson iteration is                                                                                  |      |                 |
| (6)        |                                                                                                                  |      |                 |
|            | $x_{n+1} = x_n - \frac{(x_n^3 + x_n - 3)}{3x_n^2 + 1}$ or $\frac{2x_n^3 + 3}{3x_n^2 + 1}$                        | M1A1 |                 |
|            | $x_0 = 1.25$                                                                                                     |      |                 |
|            | $x_1 = 1.214285714$                                                                                              | M1A1 |                 |
|            | $x_2 = 1.213412176$                                                                                              |      |                 |
|            | $x_3 = 1.213411663$                                                                                              | A1   |                 |
|            | $(x_4 = 1.213411663)$                                                                                            |      |                 |
|            | $\alpha = 1.213412$ correct to 6 decimal places                                                                  | A1   |                 |
| 3(a)       | $\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{sech}x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{\cosh x}\right)$ |      |                 |
|            | $= -\frac{\sinh x}{\cosh^2 x} = -\operatorname{sech} x \tanh x$                                                  | B1   | Convincing      |
| <b>(b)</b> | $f'(x) = \operatorname{sech}^2 x$                                                                                | B1   |                 |
|            | $f''(x) = -2\operatorname{sech}^{2} x \tanh x$                                                                   | B1   |                 |
|            | $f'''(x) = 4\operatorname{sech}^{2} x \tanh^{2} x - 2\operatorname{sech}^{4} x$                                  | B1   | FT 1 slip       |
|            | f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = -2                                                                    | B1   |                 |
|            | The Maclaurin series for tanhx is                                                                                |      |                 |
|            | $x - \frac{x^3}{3} + \dots$                                                                                      | M1A1 |                 |
| (c)        | $(1+x)\tanh x \approx x + x^2 - \frac{x^3}{3} - \frac{x^4}{3}$                                                   | B1   | FT their series |
|            | $\int_{0}^{0.5} (1+x) \tanh x dx \approx \int_{0}^{0.5} (x+x^2 - \frac{x^3}{3} - \frac{x^4}{3}) dx$              | M1   | FT 1 slip       |
|            | $= \left[ \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{12} - \frac{x^5}{15} \right]_0^{0.5}$                       | A1   |                 |
|            | $\begin{bmatrix} 2 & 3 & 12 & 15 \end{bmatrix}_0$<br>= 0.159 cao                                                 | A1   |                 |
|            | = 0.139 Cao                                                                                                      |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
|            |                                                                                                                  |      |                 |
| L          |                                                                                                                  |      |                 |

| Ques       | Solution                                                                                               | Mark     | Notes                              |
|------------|--------------------------------------------------------------------------------------------------------|----------|------------------------------------|
| 4          | $dx = \frac{2dt}{1+t^2}; [0,\pi/2] \to [0,1]$                                                          | B1B1     |                                    |
|            | $I = \int_{0}^{1} \frac{1}{2 - \left(\frac{1 - t^{2}}{1 + t^{2}}\right)} \times \frac{2dt}{1 + t^{2}}$ | M1A1     |                                    |
|            | $=\int_0^1 \frac{2}{3t^2+1} \mathrm{d}t$                                                               | A1       |                                    |
|            | $=\frac{2}{3}\int_{0}^{1}\frac{1}{t^{2}+1/3}\mathrm{d}t$                                               | A1       |                                    |
|            | $= \frac{2\sqrt{3}}{3} \left[ \tan^{-1}(t\sqrt{3}) \right]_0^1$                                        | A1       |                                    |
|            | $=\frac{2\sqrt{3}\pi}{9}$ (1.21) cao                                                                   | A1       |                                    |
| 5(a)       | $I_n = -\frac{1}{2} \int_0^1 x^{n-1} \frac{d}{dx} (e^{-x^2}) dx$                                       | M1       |                                    |
|            | $= -\frac{1}{2} \left[ x^{n-1} e^{-x^2} \right]_0 + \frac{n-1}{2} \int_0^1 x^{n-2} e^{-x^2} dx$        | A1A1     |                                    |
|            | $= -\frac{e^{-1}}{2} + \left(\frac{n-1}{2}\right) I_{n-2}$                                             |          |                                    |
| <b>(b)</b> |                                                                                                        |          |                                    |
|            | $I_1 = \int_0^1 x e^{-x^2} dx = -\frac{1}{2} \left[ e^{-x^2} \right]_0^x$                              | M1A1     | M1A1A1 for evaluating $I_1$ at any |
|            | $=\frac{1}{2}\left(1-e^{-1}\right)$                                                                    | A1       | stage                              |
|            | $I_5 = -\frac{e^{-1}}{2} + 2I_3$                                                                       | M1       |                                    |
|            | $= -\frac{e^{-1}}{2} + 2\left(-\frac{e^{-1}}{2} + I_1\right)$                                          | M1       |                                    |
|            | $= 1 - 2.5e^{-1}$                                                                                      | A1       |                                    |
|            |                                                                                                        |          |                                    |
|            |                                                                                                        |          |                                    |
|            |                                                                                                        |          |                                    |
|            |                                                                                                        |          |                                    |
|            |                                                                                                        |          |                                    |
|            |                                                                                                        |          |                                    |
|            |                                                                                                        | <u> </u> |                                    |

| Ques       | Solution                                                                                                           | Mark | Notes     |
|------------|--------------------------------------------------------------------------------------------------------------------|------|-----------|
| 6(a)       | Consider                                                                                                           |      |           |
|            | $y = r \sin \theta$                                                                                                | M1   |           |
|            | $= (\sin\theta + \cos\theta)\sin\theta$                                                                            | A1   |           |
|            |                                                                                                                    |      |           |
|            | $\frac{\mathrm{d}y}{\mathrm{d}\theta} = (\cos\theta - \sin\theta)\sin\theta + \cos\theta(\sin\theta + \cos\theta)$ | M1   |           |
|            |                                                                                                                    |      |           |
|            | $= \sin 2\theta + \cos 2\theta$ The tangent is parallel to the initial line where                                  | A1   | FT 1 slip |
|            |                                                                                                                    |      |           |
|            | $\frac{\mathrm{d}y}{\mathrm{d}\theta} = 0$                                                                         | M1   |           |
|            | $\tan 2\theta = -1$                                                                                                | A1   |           |
|            |                                                                                                                    | A1   |           |
|            | $\theta = \frac{3\pi}{8}  (1.18, 67.5^{\circ})$                                                                    | Al   |           |
|            | r = 1.31                                                                                                           | A1   |           |
| <i>a</i> > |                                                                                                                    |      |           |
| <b>(b)</b> | $Area = \frac{1}{2} \int r^2 d\theta$                                                                              | M1   |           |
|            | _                                                                                                                  |      |           |
|            | $= \frac{1}{2} \int_{0}^{\pi/2} (\sin \theta + \cos \theta)^{2} d\theta$                                           | A1   |           |
|            | $= 2 \int_{0}^{\sqrt{\sin \theta + \cos \theta}} d\theta$                                                          | 711  |           |
|            | $1^{\pi/2}$                                                                                                        |      |           |
|            | $= \frac{1}{2} \int_{0}^{\pi/2} (1 + \sin 2\theta) d\theta$                                                        | A1   |           |
|            |                                                                                                                    |      |           |
|            | $=\frac{1}{2}\bigg[\theta-\frac{1}{2}\cos 2\theta\bigg]_0^{\pi/2}$                                                 | A1   |           |
|            | $2 \lfloor 2 \rfloor_0$                                                                                            |      |           |
|            | $=\frac{\pi}{4} + \frac{1}{2}$ (1.29) cao                                                                          | A1   |           |
|            | 4 2                                                                                                                |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |
|            |                                                                                                                    |      |           |

| Ques         | Solution                                                                                                       | Mark | Notes         |
|--------------|----------------------------------------------------------------------------------------------------------------|------|---------------|
| <b>7</b> (a) | $x = a \sinh \theta \rightarrow dx = a \cosh \theta d\theta$                                                   | B1   |               |
|              | $I = \int \sqrt{a^2 (1 + \sinh^2 \theta)} a \cosh \theta d\theta$                                              | M1   |               |
|              | $= a^2 \int \cosh^2 \theta  d\theta$                                                                           | A1   |               |
|              | $= \frac{a^2}{2} \int (1 + \cosh 2\theta)  \mathrm{d}\theta$                                                   | A1   |               |
|              | $= \frac{a^2}{2} (\theta + \sinh \theta \cosh \theta)$                                                         | A1   | FT line above |
|              | $= \frac{a^2}{2} \left( \sinh^{-1} \left( \frac{x}{a} \right) + \frac{x\sqrt{x^2 + a^2}}{a^2} \right) \ (+ C)$ |      | Answer given  |
| (b)          | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$                                                                         | B1   |               |
|              | $L = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$                               | M1   |               |
|              | $= \int\limits_0^1 \sqrt{1+4x^2}  \mathrm{d}x$                                                                 | A1   |               |
|              | $= 2 \int_{0}^{1} \sqrt{(x^2 + 1/4)} dx$                                                                       | A1   |               |
|              | $= \frac{2}{8} \left[ \sinh^{-1} 2x + 4x \sqrt{x^2 + 1/4} \right]$                                             | A1   |               |
|              | = 1.48                                                                                                         | A1   |               |
|              |                                                                                                                |      |               |
|              |                                                                                                                |      |               |



WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>



# **GCE MARKING SCHEME**

# MATHEMATICS - M1-M3 & S1-S3 AS/Advanced

**SUMMER 2014** 

## **INTRODUCTION**

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCE MATHEMATICS - M1-M3 & S1-S3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

|    | Page |
|----|------|
| M1 | 1    |
| M2 | 9    |
| M3 | 16   |
| S1 | 24   |
| S2 | 28   |
| S3 | 31   |

## **M1**

Q Notes **Solution** Mark

1(a)



Apply N2L to crate

$$25g - R = 25 \times 1.2$$

$$R = 215 (N)$$

*R* and 25*g* opposing. Dim. Correct M1

correct equation **A**1

Any form

**A**1

B1

1(b) 
$$R = 25g = 245$$
 (N)

## **Solution**

## Mark **Notes**

2(a) Use of 
$$v = u + at$$
 with  $u=10$ ,  $v=24$ ,  $t=21$ 

$$24 = 10 + 21a$$

$$a = \frac{2}{3} \,(\text{ms}^{-2})$$

M1oe

**A**1

accept anything derived **A**1

from  $\frac{2}{3}$  rounded correctly

2(b) 
$$s = \frac{1}{2}(u+v)t$$
 with  $v=0$ ,  $u=24$ ,  $t=16$ 

$$s = \frac{1}{2} \times 24 \times 16$$

$$s = 192 \text{ (m)}$$

2(c)



- (0, 10) to (21, 24)**B**1
- **B**1 (21, 24) to (21+T, 24)
- (21+T, 24) to (37+T, 0)B1
- **B**1 all labels, units and shape.

2(d) Area under graph = 
$$15000$$
  
0.5(10+24)21 + 24T + 192 - 15000

$$0.5(10+24)21 + 24T + 192 = 15000$$

$$24T = 14451$$
  
 $T = \underline{602(.125)}$ 

| Q    | Solution                                                                                                                        | Mark     | Notes                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------|
| 3(a) | Resolve perpendicular to plane $R = mg\cos\alpha$<br>$F = \mu mg\cos\alpha$<br>$F = 0.6 \times 7 \times 9.8 \times \frac{4}{5}$ | M1<br>m1 | sin/cos<br>correct expression                                                     |
|      | F = 32.9(28  N)                                                                                                                 | A1       | Accept rounding to 32.9.                                                          |
| 3(b) | Apply N2L to <i>A</i> $T + mg\sin\alpha - F = 7a$ $T + 41.16 - 32.928 = 7a$ $T + 8.232 = 7a$                                    | M1<br>A1 | dim correct equation<br>Friction opposes motion<br>4 terms. Accept cos.<br>ft (a) |
|      | Apply N2L to $B$<br>3g - T = 3a                                                                                                 | M1<br>A1 | dim correct equation                                                              |
|      | 3g + 8.232 = 10a                                                                                                                | m1       | one variable eliminated<br>Dep on both M's                                        |
|      | $a = 3.7(632 \text{ ms}^{-2})$<br>T = 18.1(104  N)                                                                              | A1<br>A1 | cao<br>cao                                                                        |

**Solution** 

Mark

Notes

4.



B1 any 1 correct moment.

Take moments about C M1 dim correct equation. oe

 $0.4R_D = 3g \times 0.6 + 12g \times 1.5$  A1 correct equ any form  $0.4R_D = 19.8g = 194.04$ 

 $R_D = 49.5g = 485.1 \text{ (N)}$  A1 cao

Resolve vertically M1 equation attempted. Or  $2^{nd}$  moment equation.

 $R_D = R_C + 15g$  A1  $R_C = 34.5g = 338.1 \text{ (N)}$  A1 cao

Alternative solution

Moment equation about A/centre/B M1
Correct equation B1

Second moment equation M1
Correct equation A1

Correct method for solving simultaneously m1 Dep on both M's

 $R_C = 34.5g = 338.1 \text{ (N)}$  A1 cao  $R_D = 49.5g = 485.1 \text{ (N)}$  A1 cao

| Q | Solution | Mark |
|---|----------|------|
|   |          |      |

5(a) Resolve perpendicular to motion 20sin60 + 
$$T\sin 30 = 28\sin 60$$
 M1 equation,  $\sin /\cos A1$  
$$20\frac{\sqrt{3}}{2} + T \times \frac{1}{2} = 28 \frac{\sqrt{3}}{2}$$
 A1 convincing 
$$T = 8\sqrt{3}$$

**Notes** 

5(b) N2L in direction of motion M1 dim correct all forces and No extra force 
$$20\cos 60 + 7\cos 30 + 28\cos 60 - 16 = 80a \qquad A2 \qquad -1 \text{ each error}$$
 
$$20 \times \frac{1}{2} + 8\sqrt{3} \times \frac{\sqrt{3}}{2} + 28 \times \frac{1}{2} - 16 = 80a$$
 
$$a = \underline{0.25 \text{ (ms}}^{-2})$$
 A1 cao

5(c) N2L 
$$-16 = 80a$$
 M1 no extra force  $a = -0.2$  A1 accept +/-

Use of  $v = u + at$ ,  $v = 4$ ,  $u = 12$ ,  $a = (+/-)0.2$  m1 A1 ft if  $a < 0$  t =  $40$  (s) A1 ft if  $a < 0$ 

**Solution** 

Mark

**Notes** 

6(a)



Conservation of momentum

equation required M1Only one sign error. Ignore common factors

$$2 \times 3 - 7 \times 5 = 3v_A + 7v_B$$
  
 $3v_A + 7v_B = -29$ 

**A**1

Restitution

M1 $v_B$ ,  $v_A$  opposing consistent with diagram, +/-7 with the 0.6.

$$v_B - v_A = -0.6(-5 - 2)$$
  
 $v_B - v_A = 4.2$ 

**A**1

$$-7v_A + 7v_B = 29.4$$

$$3v_A + 7v_B = -29$$

m1one variable eliminated. Dep on both M's.

$$v_A = (-)5.84$$
  
 $v_B = (-)1.64$ 

 $10v_A = -58.4$ 

**A**1 cao **A**1 cao

M1used

$$I = 7v_B - 7(-5)$$
  
 $I = -11.48 + 35$   
 $I = 23.52$  (Ns)

**A**1 ft their  $v_A$  or  $v_B$ 

6(c) 
$$3.65 = e(5.84)$$
  
 $e = 0.625$ 

B1 ft  $v_A$  if > 3.65.

## **Solution**

Mark

**Notes** 

7.



 $T_{AB}\sin 60 = T_{AC}\sin 45$ 

$$\frac{\sqrt{3}}{2} T_{AB} = \frac{1}{\sqrt{2}} T_{AC}$$

$$T_{AB} = \sqrt{\frac{2}{3}} T_{AC}$$

M1

**A**1

equation, no extra force

 $T_{AB}\cos 60 + T_{AC}\cos 45 = 9g$ 

$$T_{AB} + \sqrt{2} T_{AC} = 18g$$

$$\sqrt{\frac{2}{3}} T_{AC} + \sqrt{2} T_{AC} = 18g$$

M1

equation, no extra force

$$T_{AC} + \sqrt{2} T_{AC} = 18g$$
 m1

$$T_{AC} = \underline{79.(078) (N)}$$

$$T_{AB} = \overline{64.(567) (N)}$$

**A**1

cao allow 79

Alternative Method

Third angle 75°/105°

**B**1

$$\frac{T_{AB}}{\sin 45} = \frac{9g}{\sin 75}$$

$$T_{AB} = \frac{9g \times \sin 45}{\sin 75}$$

$$T_{AB} = \underline{64.(567)(N)}$$

M1sine rule attempted

si

$$\frac{T_{AC}}{\sin 60} = \frac{9g}{\sin 75}$$

$$T_{AC} = \frac{9g \times \sin 60}{\sin 75}$$

$$\sin 75$$
 $T_{AC} = \frac{79.(078) \text{ (N)}}{}$ 

M1sine rule attempted

| Q       |                                        | Solution                    |                  |                       | Mark           | Notes                                                             |
|---------|----------------------------------------|-----------------------------|------------------|-----------------------|----------------|-------------------------------------------------------------------|
| 8(a)    |                                        | mass                        | AD               | AB                    |                |                                                                   |
|         | ABCD<br>XYZ<br>E<br>F<br>Jewel         | 72<br>12<br>24<br>36<br>120 | 6<br>6<br>3<br>9 | 3<br>2<br>4<br>4<br>y | B1<br>B1<br>B1 | both <i>E</i> and <i>F</i> correct masses in correct proportions. |
| 8(a)(i) | 120x = 756                             | = 72×6 + 24×3               | + 36×9           | ,                     | M1<br>A1       | masses and moments consistent. ft table if triangle subt.         |
|         | $x = \frac{63}{10} = \underline{6.30}$ | <u>(cm)</u>                 |                  |                       | A1             | cao                                                               |
| 8(a)(ii | ) Moments abo                          | ut AB                       |                  |                       | M1             | masses & moments consistent                                       |
|         | $120y + 12 \times 2 = 120y = 432$      | = 72×3 + 24×4               | + 36×4           |                       | A1             | ft table if triangle subt.                                        |
|         | $y = \frac{18}{5} = 3.6$               | <u>(cm)</u>                 |                  |                       | A1             | cao                                                               |
| 8(b)    | PC = 12 - x $PC = 5.7  (cm)$           | )                           |                  |                       | B1             | ft their $x$ if $< 12$ .                                          |

# **M2**

| Q    | Solution                                                                                                                                                 | Mark       | Notes           |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| 1(a) | EE = $\frac{1}{2} \times \frac{\lambda x^2}{l}$ , $\lambda = 625$ , $x = (+/-)0.1$ , $l = 0.2$<br>EE = $\frac{1}{2} \times \frac{625 \times 0.1^2}{0.2}$ | M1         |                 |
|      | $EE = \frac{2}{2} \cdot 0.2$<br>EE = 15.625  (J)                                                                                                         | A1         |                 |
|      |                                                                                                                                                          |            |                 |
| 1(b) | $KE = \frac{1}{2} \times 0.8v^2 \ (= 0.4v^2)$                                                                                                            | B1         |                 |
|      | WD by resistance = $46 \times 0.1$ (= 4.6)                                                                                                               | B1         |                 |
|      | Work-energy Principle                                                                                                                                    | M1         | 3 terms, no PE. |
|      | $\frac{1}{2}0.8v^2 + 46 \times 0.1 = 15.625$                                                                                                             | A1         | FT their EE     |
|      | $0.4v^2 = 15.625 - 4.6$ $0.4v^2 = 11.025$                                                                                                                |            |                 |
|      | $v = \sqrt{\frac{11 \cdot 025}{0 \cdot 4}}$                                                                                                              |            |                 |
|      | $v = 5.25 \text{ (ms}^{-1})$                                                                                                                             | <b>A</b> 1 | cao             |

**Solution** 

Mark **Notes** 

2(a)

$$F - R = ma$$

$$30t^{-2} - 150 = 5a$$

$$6t^{-2} - 30 = a$$

$$\frac{dv}{dt} = 6t^{-2} - 30$$

M1used, F and R opposing.

**A**1

Answer given

(b)  $24 = \frac{6}{t^2} - 30$ 

$$\frac{6}{t^2} = 54$$

$$t = \frac{1}{3}$$

M1Ft (a) if same form

**A**1 cao, accept 0.3.

2(c)

Integrate w.r.t. 
$$t$$
  
 $v = -6t^{-1} - 30t (+ C)$ 

$$t = \frac{1}{3}, v = 18$$

$$18 = -18 - 10 + C$$

$$C = 46$$

$$v = -6t^{-1} - 30t + 46$$

M1Increase in powers

**A**1

m1

When v = 10

$$10 = -\frac{6}{t} - 30t + 46$$

$$5t^2 - 6t + 1 = 0$$

$$(5t - 1)(t - 1) = 0$$

$$t = \frac{1}{5}, 1$$

m1

recognition of quadratic m1Some attempt to solve.

**A**1 cao

| • | • |
|---|---|
|   |   |
| • | , |
| ` |   |

## Solution

## Mark Notes

3(a) 
$$T = \frac{P}{v}$$
,  $P = 90 \times 1000$ ,  $v = 4.8$ 

$$T = \frac{90 \times 1000}{4 \cdot 8}$$

$$T = 18750$$

M1 dim correct, all forces 
$$T$$
,  $R$  opposing.

$$T - mg\sin\alpha - R = ma$$

**A**1

$$18750 - 4000 \times 9.8 \times \frac{2}{49} - R = 4000 \times 1.2$$

$$R = 18750 - 1600 - 4800$$

$$R = 12350 \text{ (N)}$$

3(b) N2L with 
$$a = 0$$

$$T = \frac{90 \times 1000}{v}$$

$$T - 1600 - 12800 = 0$$

$$v = 6.25 \text{ ms}^{-1}$$

**Solution** 

Mark Notes

 $4(a) \qquad \mathbf{r} = \mathbf{p} + t\mathbf{v}$ 

 $\mathbf{r}_A = (3-t)\mathbf{i} + (5+2t)\mathbf{j} + (20+t)\mathbf{k}$  $\mathbf{r}_B = (-2+3t)\mathbf{i} + (x-4t)\mathbf{j} + (15+2t)\mathbf{k}$  M1 used

A1 A1

4(b)  $\mathbf{r}_B - \mathbf{r}_A = (-5 + 4t)\mathbf{i} + (x - 5 - 6t)\mathbf{j} + (-5 + t)\mathbf{k}$ 

M1 A1

ft (a) similar expressions.

$$AB^{2} = x^{2} + y^{2} + z^{2}$$
  

$$AB^{2} = (-5 + 4t)^{2} + (x - 5 - 6t)^{2} + (-5 + t)^{2}$$

M1 A1

cao

4(c) Differentiate

$$\frac{dAB^2}{dt} = 2(-5+4t)(4) + 2(x-5-6t)(-6)$$

M1 powers reduced

$$+2(-5+t)(1)$$

$$-40+32t-12x+60+72t-10+2t=0$$

0

m1 equating to 0.

$$106t + 10 = 12x$$

When 
$$t = 5$$

$$x = 45$$

A1 cao

**Solution** 

Mark **Notes** 

5(a) 
$$u_H = \frac{42}{2.5} = \underline{16.8 \text{ (ms}^{-1})}$$

**B**1

$$s = u_V t + 0.5at^2$$
,  $s = 3$ ,  $t = 2.5$ ,  $a = (\pm)9.8$   
 $3 = 2.5u_V - 4.9 \times 2.5^2$ 

M1

$$3 = 2.5u_V - 4.9 \times 2.5^2$$
  
 $u_V = 13.45 \text{ (ms}^{-1}\text{)}$ 

**A**1

**A**1 cao, accept 13.4, 13.5.

5(b) 
$$v_V = u_V + at$$
,  $u_V = 13.45$ ,  $a = (\pm)9.8$ ,  $t=2.5$   
 $v_V = 13.45 - 9.8 \times 2.5$ 

M1**A**1

ft from (a)

$$v_V = -11.05$$

magnitude of vel = 
$$\sqrt{u_H^2 + v_V^2}$$

m1

$$= 20.11 \, (\text{ms}^{-1})$$

**A**1 cao

$$\theta = \tan^{-1} \left( \frac{11 \cdot 05}{16 \cdot 8} \right)$$

m1

 $\theta = 33.33^{\circ}$  (below horizontal)

**A**1 cao

5(c) 
$$s = ut + 0.5at^2$$
,  $s = 0$ ,  $u=13.45$ ,  $a=(\pm)9.8$  M1  
 $0 = 13.45t - 4.9t^2$ 

t = 2.7449

Distance =  $2.7449 \times 16.8$ 

m1

Distance = 46.11

Required distance = 46.11 - 42 = 4.11 (m) A1

cao

**Solution** 

**Notes** Mark

6(a)  $\mathbf{a} = \frac{dv}{dt}$ 

differentiation attempted. M1

 $\mathbf{a} = 8\cos 2t \,\mathbf{i} - 75\sin 5t \,\mathbf{j}$ 

Vectors required.

At  $t = \frac{3\pi}{2}$ , (**a** = -8**i** + 75**j**)

m1substitution of *t*.

Magnitude of force =  $3 \times \sqrt{8^2 + 75^2}$ = 226.28 (N)

or  $\mathbf{F} = 3(-8\mathbf{i} + 75\mathbf{j})$ M1 **A**1

integration attempted

cao

 $\mathbf{r} = \int 4\sin 2t \, \mathbf{i} + 15\cos 5t \, \mathbf{j} \, \mathrm{d}t$ 6(b)

M1

**A**1

 $\mathbf{r} = -2\cos 2t \,\mathbf{i} + 3\sin 5t \,\mathbf{j} \,(+\mathbf{c})$ At t = 0,

**A**1

 $-2\mathbf{i} + 3\mathbf{j} = -2\mathbf{i} + \mathbf{c}$ 

m1

c = 3j

**A**1

 $\mathbf{r} = -2\cos 2t \,\mathbf{i} + 3\sin 5t \,\mathbf{j} + 3\mathbf{j}$ 

Particle crosses the y-axis when 6(c)  $-2\cos 2t = 0$ 

M1

$$2t = \frac{\pi}{2}$$

 $t = \frac{\pi}{4}$ 

**A**1 cao

Distance from origin =  $3\sin(5 \times \frac{\pi}{4}) + 3$ 

m1substitute t into  $\mathbf{r}$ 

= 0.88 (m)

**A**1 cao

**Solution** 

Mark **Notes** 

7(a)

Conservation of energy  

$$0.5m(4u)^2 = mg(2l) + 0.5mu^2$$
  
 $16u^2 = 4gl + u^2$ 

$$16u^2 = 4gl +$$

$$u^2 = \frac{4}{15}gl$$

M1

**A**1

**A**1 convincing

7(b)(i) Conservation of energy  

$$0.5m(4u)^{2} = 0.5mv^{2} + mgl(1 - \cos\theta)$$

$$v^{2} = 16u^{2} - 2gl + 2gl\cos\theta$$

$$v^2 = 16u^2 - 2gl + 2glcc$$

$$v^2 = \frac{34}{15}gl + 2gl\cos\theta$$

**A**1

M1

M1

**A**1

N2L towards centre of circle

$$T - mg\cos\theta = \frac{mv^2}{1}$$

$$T = \frac{34}{15}mg + 3mg\cos\theta$$

If M1s gained, substitute m1

for 
$$v^2$$
.

$$T = \frac{mg}{15}(34 + 45\cos\theta)$$

**A**1 any correct form

7(b)(ii) when T = 0,  $\cos \theta = -\frac{34}{45}$ 

$$\theta = 139.1^{\circ}$$

M1putting T = 0 in acos  $\pm$  b

A1 Ft 
$$\cos = a$$
,  $a < 0$ .

**M3** 

Q Solution Mark Notes

1(a) N2L 
$$500 - 100v = 1200 \frac{dv}{dt}$$
 M1  

$$\frac{dv}{dt} = \frac{500 - 100v}{1200} = \frac{5 - v}{12}$$
 A1 convincing

1(b) 
$$\int 12 \frac{dv}{5-v} = \int dt$$

$$-12\ln(5-v) = t + (C)$$
M1 sep. var. (5-v) together.

A1 correct integration

When  $t = 0$ ,  $v = 0$ ,  $C = -12\ln 5$ 

$$t = 12\ln\left(\frac{5}{5-v}\right)$$
m1 allow +/-, oe
$$\frac{5}{5-v} = e^{\frac{t}{12}}$$
m1 inversion ft similar exp.
$$v = 5(1 - e^{-t/12})$$
A1 cao

**B**1

Ft similar expression

1(c) When 
$$v = 4$$
,  $t = 12\ln\left(\frac{5}{5-4}\right)$  M1  
 $t = 12\ln 5 \ (= 19.31s)$  A1 cao

limiting speed =  $5 \text{ (ms}^{-1})$ 

**Solution** 

Mark

**Notes** 

2(a) Period = 
$$\frac{2\pi}{\omega} = 2$$
  
 $k = \omega = \pi$ 

M1 A1

2(b) 
$$x = 0.52\cos \pi t$$

When 
$$t = \frac{1}{3}$$
,  $x = 0.52\cos\frac{\pi}{3}$   
 $x = 0.26$ 

$$2(c)$$
  $0.4 = 0.52\cos \pi t$ 

$$\cos \pi t = \frac{0.4}{0.52}$$
$$t = 0.22$$
$$t = 1.78$$

2(d) 
$$v^2 = \omega^2 (0.52^2 - x^2)$$
  
 $v^2 = \pi^2 (0.52^2 - 0.2^2)$   
 $v = \pi (0.48) (= 1.508 \text{ ms}^{-1})$ 

M1 used. oe m1 sub 
$$x = 0.2$$

2(e) 
$$\max v = a\omega$$
  
=0.52 $\pi$  (= 1.634 ms<sup>-1</sup>)

**Solution** 

Mark

**Notes** 

3



Impulse = change in momentum

 $J = 2u\cos 30 - 2v$ 

J = 3v

M1used

**A**1

**B**1

Eliminating J

 $3v = 2u\cos 30 - 2v$ 

one variable eliminated m1

 $5v = 2u\cos 30$ 

 $v = 0.4u \cos 30$ 

 $v = 2.77 \text{ (ms}^{-1})\text{(speed of }A\text{)}$ 

**A**1 cao

 $J = 1.2 u \cos 30 = 8.31$  (Ns)

**A**1 ft 3 x c's v.

 $u_B = u \sin 30 = 4 \text{ (ms}^{-1})$ 

**B**1

Speed of  $B = \sqrt{(2.77^2 + 4^2)}$ Speed of  $B = 4.87 \text{ (ms}^{-1})$ 

m1**A**1

cao

| • | • |
|---|---|
|   |   |
| • | , |
| ` |   |

## **Solution**

### Mark **Notes**

Auxiliary equation  

$$2m^2 + 6m + 5 = 0$$
 B1  
 $m = -1.5 \pm 0.5i$  B1

C.F. is 
$$x = e^{-1.5t} (A\sin 0.5t + B\cos 0.5t)$$
 B1 ft complex roots

For PI, try 
$$x = a$$

$$5a = 1$$

$$a = 0.2$$

B1 
$$ft CF + a$$

GS is 
$$x = e^{-1.5t} (A\sin 0.5t + B\cos 0.5t) + 0.2$$
 B1

4(b) 
$$e^{-1.5t} \rightarrow 0 \text{ as } t \rightarrow \infty$$

M1si

x tends to 0.2 as t tends to infinity Limiting value = 0.2

**A**1 ft similar expression

$$4(c)(i)$$
  $x = 0.5$  and  $\frac{dx}{dt} = 0$  when  $t = 0$ 

$$B + 0.2 = 0.5$$
  
 $B = 0.3$ 

**A**1 cao

$$\frac{dx}{dt} = -1.5e^{-1.5t}(A\sin 0.5t + B\cos 0.5t)$$

$$+ e^{-1.5t}(0.5A\cos 0.5t - 0.5B\sin 0.5t)$$

B1 ft similar expressions

$$0 = -1.5B + 0.5A$$

$$A = 3B = 0.9$$

**A**1 cao

$$x = e^{-1.5t}(0.9\sin 0.5t + 0.3\cos 0.5t) + 0.2$$

$$4(c)(ii)$$
 When  $t = \frac{\pi}{3}$ 

$$x = e^{-\pi/2} (0.9 \sin \frac{\pi}{6} + 0.3 \cos \frac{\pi}{6}) + 0.2$$

$$x = 0.348$$

**A**1 cao

| • | 1 |  |
|---|---|--|
| l | J |  |

## **Solution**

### Mark **Notes**

5(a) Using F = ma  

$$1200(v+3)^{-1} = 800 \text{ a}$$
  
 $2v\frac{dv}{dx} = \frac{3}{v+3}$ 

**A**1

5(b) 
$$\int 3dx = \int 2v(v+3)dv$$
$$3x = \frac{2v^3}{3} + 3v^2 + (C)$$

convincing

$$x = 0$$
,  $v = 0$ , hence  $C = 0$   
When  $v = 3$ ,  $3x = 18 + 27$   
 $x = 15$ 

$$x = 15$$

$$5(c) \qquad \frac{dv}{dt} = \frac{3}{2(v+3)}$$
$$\int 2(v+3)dv = \int 3dt$$
$$v^2 + 6v = 3t + (C)$$

**B**1

$$t = 0, v = 0, \text{ hence } C = 0$$

When 
$$v = 3$$
  
  $3t = 9 + 18 = 27$   
  $t = 9$ 

$$5(d)(i) v^{2} + 6v - 3t = 0$$

$$v = 0.5(-6 \pm \sqrt{(6^{2} - 4 \times -3t)})$$

$$v = -3 + \sqrt{(9 + 3t)}$$

(ii) 
$$\frac{dx}{dt} = -3 + (9 + 3t)^{\frac{1}{2}}$$

$$x = -3t + \frac{2}{9}(9+3t)^{\frac{3}{2}} + (C)$$

$$x = 0$$
,  $t = 0$ , (hence C = -6)  
 $x = -3t + \frac{2}{9}(9 + 3t)^{\frac{3}{2}} + (-6)$ 

When t = 7

$$x = -21 - 6 + 2 \times 30^{1.5} / 9 = 9.5148$$

x is approximately 9.5

| Q                 | Solution                                                     | Mark | Notes |
|-------------------|--------------------------------------------------------------|------|-------|
| 5(d)(ii) <i>v</i> | $= -3 + \sqrt{(9+3t)}$ When $t=7$ , $v = -3 + \sqrt{(9+21)}$ | M1   |       |
| ·                 | $v = -3 + \sqrt{30}$<br>v = 2.4723                           | A1   | si    |
| x                 | $= \frac{2}{9}(-2.4723)^3 + (2.4723)^2$                      | m1   |       |
| X                 | = 9.51 (m)                                                   | A1   | cao   |

**Solution** 

Mark

Notes

6(a)



- B2 B1 if one error.
- B0 more than one error.

6(b) Resolve vertically

R = 12g + 70g = 82g

M1 all forces

**A**1

6(c) Moments about B

M1 dim correct equation

All terms

 $3T\sin 75 + 12g \times 4\cos 75 + 70gx \times \cos 75$ 

 $= 8S\sin 75$ 

A4 -1 each incorrect term

Accept *T*=100.

Resolve horizontally

$$T + F = S$$

$$F = 0.1R = 8.2g$$

$$S = T + 8.2g$$

B1 ft *R* 

B1 ft F

 $8(8.2g+T)\sin 75 - 3T\sin 75 - 48g\cos 75$ 

$$=70gx\cos 75$$

 $5T\sin 75 =$ 

$$48g\cos 75 - 65.6g\sin 75 + 70gx\cos 75$$

T = 100

x = 5.53 m

A1 cao

**Solution** 

Mark

Notes

<u>OR</u>

Moments about A

 $5T\sin 75 + 12g \times 4\cos 75 + 70g(8-x) \times \cos 75 + 8F\sin 75 = 8R\cos 75$ 

 $F = 0.1R = 80.36 \,\mathrm{N}$ 

T = 100x = 5.53 m M1 dim correct equation

All terms

A5 -1 each incorrect term Accept *T*=100.

B1 Ft *R* 

A1 cao

6(d) Ladder modelled as a rigid rod.

**B**1

| Ques | Solution                                                                                                                                                                                                                                                       | Mark         | Notes                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------|
| 1(a) | EITHER $P(A \cap B) = P(A) + P(B) - P(A \cup B)$                                                                                                                                                                                                               | M1           | Award M1 for using formula                         |
|      | $= 0.2$ This is not equal to $P(A) \times P(B)$ therefore not                                                                                                                                                                                                  | A1           |                                                    |
| (b)  | independent. OR                                                                                                                                                                                                                                                | A1           |                                                    |
|      | Assume A,B are independent so that $P(A \cap B) = P(A) + P(B) - P(A)P(B)$ $= 0.58$                                                                                                                                                                             | M1<br>A1     | Award M1 for using formula                         |
|      | Since $P(A \cup B) \neq 0.58$ , A,B are not independent.                                                                                                                                                                                                       | A1           |                                                    |
|      | $P(A \mid B') = \frac{P(A \cap B')}{P(B')}$                                                                                                                                                                                                                    | M1           | Award M1 for using formula                         |
|      | $=\frac{0.3-0.2}{0.6}$                                                                                                                                                                                                                                         | A1           | FT their $P(A \cap B)$ if independence not assumed |
|      | $=\frac{1}{6}$                                                                                                                                                                                                                                                 | A1           | Accept Venn diagram                                |
| 2    | np = 0.9,  npq = 0.81                                                                                                                                                                                                                                          | B1B1<br>M1A1 |                                                    |
|      | Dividing, $q = 0.9, p = 0.1$<br>n = 9                                                                                                                                                                                                                          | A1           |                                                    |
| 3(a) | P(1 of each) = $\frac{3}{9} \times \frac{3}{8} \times \frac{3}{7} \times 6 \text{ or } \begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} \div \begin{pmatrix} 9 \\ 3 \end{pmatrix}$ | M1A1         | M1A0 if 6 omitted                                  |
|      | $=\frac{9}{28}$                                                                                                                                                                                                                                                | A1           |                                                    |
| (b)  | P(2 particular colour and 1 different) = $\frac{3}{9} \times \frac{2}{8} \times \frac{6}{7} \times 3$ or $\binom{3}{2} \times \binom{6}{1} \div \binom{9}{3}$                                                                                                  | M1A1         | M1A0 if 3 omitted                                  |
|      | $=\frac{3}{14}$                                                                                                                                                                                                                                                | A1           | Allow 3/28                                         |
|      | P(2 of any colour and 1 different) = $\frac{9}{14}$                                                                                                                                                                                                            | B1           | FT previous line                                   |
| 4(a) | Let $X$ denote the number of goals scored in the first 15 minutes so that $X$ is Po(1.5) si                                                                                                                                                                    | B1           |                                                    |
|      | $P(X=2) = \frac{e^{-1.5} \times 1.5^2}{2!}$                                                                                                                                                                                                                    | M1<br>A1     | Award M0 if no working seen                        |
| (b)  | $= 0.251$ $P(X > 2) = 1 - e^{-1.5} \left( 1 + 1.5 + \frac{1.5^{2}}{2!} \right)$                                                                                                                                                                                | M1A1         |                                                    |
|      | = 0.191                                                                                                                                                                                                                                                        | A1           |                                                    |

| Ques           | Solution                                                                                                                                                          | Mark                   | Notes                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------|
| 5(a)           | Let $X =$ number of female dogs so $X$ is B(20,0.55)                                                                                                              | B1                     | si                                                   |
| (i)            | $P(X = 12) = {20 \choose 12} \times 0.55^{12} \times 0.45^{8}$                                                                                                    | M1                     | Accept 0.4143 – 0.2520<br>or 0.7480 – 0.5857         |
| (ii)           | $= 0.162$ Let $Y =$ number of male dogs so $Y$ is $B(20,0.45)$ $P(8 \le X \le 16) = P(4 \le Y \le 12)$ $= 0.9420 - 0.0049 \text{ or } 0.9951 - 0.0580$ $= 0.9371$ | M1<br>A1<br>A1A1<br>A1 | Award M0 if no working seen                          |
| (b)            | Let $U$ = number of yellow dogs so $U$ is B(60,0.05) $\approx$ Po(3)<br>P( $U < 5$ ) = 0.8153                                                                     | M1<br>m1A1             |                                                      |
| 6(a)           | $P(head) = \frac{3}{4} \times \frac{1}{2} + \frac{1}{4} \times 1$ $= \frac{5}{8}$                                                                                 | M1A1<br>A1             | M1 Use of Law of Total Prob (Accept tree diagram)    |
| (b)(i)<br>(ii) | $P(DH head) = \frac{1/4}{5/8}$ $= \frac{2}{5} cao$ EITHER                                                                                                         | B1B1<br>B1             | B1 num, B1 denom<br>FT denominator from (a)          |
| (II)           | $P(head) = \frac{3}{5} \times \frac{1}{2} + \frac{2}{5} \times 1$ $= \frac{7}{10}$                                                                                | M1A1<br>A1             | M1 Use of Law of Total Prob<br>(Accept tree diagram) |
|                | OR $P(\text{Head}) = \frac{\frac{3}{4} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times 1}{\frac{5}{8}}$ $= \frac{7}{10}$                               | B1B1                   | B1 num, B1 denom<br>FT denominator from (a)          |
|                |                                                                                                                                                                   |                        |                                                      |

| Ques | Solution                                                                                                                                                                                                                                   | Mark                         | Notes                        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|
| 7(a) | [0,0.4]                                                                                                                                                                                                                                    | B1                           | Allow(0,0.4)                 |
| (b)  | $E(X) = 0.1 + 0.6 + 3\theta + 0.8 + 5(0.4 - \theta)$<br>= 3.5 - 2\theta<br>The range is [2.7,3.5]                                                                                                                                          | M1<br>A1<br>A1               | FT the range from (a)        |
| (c)  | $E(X^{2}) = 0.1 + 1.2 + 9\theta + 3.2 + 25(0.4 - \theta)$ $Var(X) = 0.1 + 1.2 + 9\theta + 3.2 + 25(0.4 - \theta)$ $- (3.5 - 2\theta)^{2}$ $= 2.25 - 2\theta - 4\theta^{2}$ $Var(X) = 1.5 \text{ gives}$ $4\theta^{2} + 2\theta - 0.75 = 0$ | M1A1<br>M1<br>A1<br>M1<br>A1 | Must be in terms of $\theta$ |
|      | $16\theta^{2} + 8\theta - 3 = 0$ $(4\theta + 3)(4\theta - 1) = 0$ $\theta = 0.25$                                                                                                                                                          | M1<br>A1                     | Allow use of formula         |
| 8(a) | EITHER the sample space contains 64 pairs of which 8 are equal OR whatever number one of them obtains, 1 number out of 8 obtained by the other one gives equality.                                                                         | M1                           |                              |
|      | P(equal numbers) = $\frac{1}{8}$                                                                                                                                                                                                           | <b>A1</b>                    |                              |
| (b)  | The possible pairs are (4,8);(5,7);(6,6);(7,5);(8,4) EITHER the sample space contains 64 pairs of                                                                                                                                          | B1                           |                              |
|      | which 5 give a sum of 12 OR each pair has probability 1/64.                                                                                                                                                                                | M1<br>A1                     |                              |
|      | $P(sum = 12) = \frac{5}{64}$                                                                                                                                                                                                               | AI                           |                              |
| (c)  | EITHER reduce the sample space to $(4,8);(5,7);(6,6);(7,5);(8,4)$<br>OR $P(\text{equal numbers}) = \frac{P(6,6)}{P(\text{sum} = 12)} = \frac{1/64}{5/64}$                                                                                  | M1                           |                              |
|      | Therefore P(equal numbers) = $\frac{1}{5}$                                                                                                                                                                                                 | A1                           |                              |

| Ques    | Solution                                              | Mark      | Notes                                                                                    |
|---------|-------------------------------------------------------|-----------|------------------------------------------------------------------------------------------|
| 9(a)(i) | $P(0.4 \le X \le 0.6) = F(0.6) - F(0.4)$              | M1        |                                                                                          |
|         | = 0.261                                               | <b>A1</b> |                                                                                          |
| (ii)    | The median <i>m</i> satisfies                         |           |                                                                                          |
|         | $2m^3 - m^6 = 0.5$                                    | <b>B1</b> |                                                                                          |
|         | $2m^6 - 4m^3 + 1 = 0$                                 |           |                                                                                          |
|         | $m^3 = \frac{4 \pm \sqrt{8}}{4}$ (0.293)              | M1A1      | Award M1 for a valid attempt to                                                          |
|         | m = 0.664                                             | A1        | solve the equation Do not award A1 if both roots                                         |
| (b)(i)  | Attempting to differentiate $F(x)$                    | M1        | given                                                                                    |
|         | $f(x) = 6x^2 - 6x^5$                                  | <b>A1</b> |                                                                                          |
| (ii)    | $E(X^{3}) = \int_{0}^{1} x^{3} (6x^{2} - 6x^{5}) dx$  | M1A1      | M1 for the integral of $x^3 f(x)$<br>A1 for completely correct                           |
|         | $=\left[\frac{6x^{6}}{6}-\frac{6x^{9}}{9}\right]^{1}$ | <b>A1</b> | although limits may be left until $2^{nd}$ line.<br>FT their $f(x)$ if M1 awarded in (i) |
|         | = 1/3                                                 | <b>A1</b> |                                                                                          |
|         |                                                       |           |                                                                                          |
|         |                                                       |           |                                                                                          |
|         |                                                       |           |                                                                                          |

| Ques | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mark       | Notes                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|
| 1    | $\bar{x} = \frac{405.6}{8}  (= 50.7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1         |                                |
|      | o a constant of the constant o |            |                                |
|      | SE of $\overline{X} = \frac{4}{\sqrt{8}}$ (= 1.4142)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1A1       |                                |
|      | 90% conf limits are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                |
|      | $50.7 \pm 1.645 \times 1.4142$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1A1<br>A1 | M1 correct form, A1 correct z. |
|      | giving [48.4, 53.0] cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AI         | Award M0 if no working seen    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |
| 2(a) | Upper quartile = mean + $0.6745 \times SD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1         |                                |
| (b)  | = 86.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1         |                                |
| (b)  | Let X=weight of an orange, Y=weight of a lemon $E(\Sigma X) = 1984$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1         |                                |
|      | $Var(\Sigma X) = 512$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1         |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |
|      | $z = \frac{2000 - 1984}{\sqrt{512}} = 0.71$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1A1       | Award M0 if no working seen    |
| (c)  | Prob = 0.7611 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1         |                                |
|      | Let $U = X - 3Y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1<br>A1   |                                |
|      | E(U) = -7<br>$Var(U) = 64 + 9 \times 2.25 = 84.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1A1       |                                |
|      | We require $P(U > 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                |
|      | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m1A1       | Award m0 if no working seen    |
|      | $z = \frac{0+7}{\sqrt{84.25}} = 0.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Tivare mo ii no working seen   |
|      | Prob = 0.2236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>A1</b>  |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |
| 3(a) | $H_0: \mu_M = \mu_F; H_1: \mu_M \neq \mu_F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>B</b> 1 |                                |
| (b)  | Let $X=$ male weight, $Y=$ female weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                |
|      | $(\sum x = 39.2; \sum y = 46.6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                |
|      | $\bar{x} = 4.9; \bar{y} = 4.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1B1       |                                |
|      | SE of diff of means= $\sqrt{\frac{0.5^2}{8} + \frac{0.5^2}{10}}$ (0.237)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1A1       |                                |
|      | Test statistic = $\frac{4.9 - 4.66}{0.237}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m1         | Award m0 if no working seen    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | The month is working seen      |
|      | = 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1<br>A1   |                                |
|      | Prob from tables = $0.1562$<br>p-value = $0.3124$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1         | FT line above                  |
|      | <i>p</i> -value = 0.3124  Insufficient evidence to conclude that there is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 1 1 HHE above                  |
|      | difference in mean weight between males and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>B</b> 1 | FT their <i>p</i> -value       |
|      | females.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | F                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |

| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_0: p = 0.6; H_1: p < 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                   | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Let $X = \text{Number of games won}$ Under $H_0$ , $X$ is $B(20,0.6)$ si Let $Y = \text{Number of games lost}$ Under $H_0$ , $Y$ is $B(20,0.4)$ $p$ -value = $P(X \le 7   (X \text{ is } B(20,0.6)))$ = $P(Y \ge 13   Y \text{ is } B(20,0.4)$ = $0.021$ Strong evidence to reject Gwilym's claim (or to accept Huw's claim). $X$ is now $B(80,0.6)$ (under $H_0$ ) $\approx N(48,19.2)$ $p$ -value = $P(X \le 37   X \text{ is } N(48,19.2))$ | B1 B1 B1 M1 A1 A1 B1 B1B1 M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Award M0 if no working seen  FT on p-value  Award M0 if no working seen  Award M1A0A1 for incorrect or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = -2.40                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | no continuity correction<br>No cc; $z = -2.51$ , $p = 0.00604$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| p-value = 0.0082                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.5; $z = -2.62$ , $p = 0.0044$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Very strong evidence to reject Gwilym's claim (or to accept Huw's claim).                                                                                                                                                                                                                                                                                                                                                                      | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT on p-value only if less than 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E(X) = E(Y) = 1.2                                                                                                                                                                                                                                                                                                                                                                                                                              | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E(U) = E(X)E(Y) = 1.44 cao                                                                                                                                                                                                                                                                                                                                                                                                                     | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $Var(X) = Var(Y) = 0.96$ $E(X^{2})(=E(Y^{2})) = Var(X) + [E(X)]^{2} = 2.4$ $Var(U) = E(X^{2}Y^{2}) - [E(XY)]^{2}$                                                                                                                                                                                                                                                                                                                              | B1<br>M1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT their values from (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $= E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$                                                                                                                                                                                                                                                                                                                                                                                                          | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Under $H_0$ , X is Po(15) si<br>$P(X \le 10) = 0.1185$ ; $P(X \ge 20) = 0.1248$<br>Significance level = 0.2433                                                                                                                                                                                                                                                                                                                                 | B1<br>B1<br>B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Award B1 for either correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| X is now Poi(10)<br>P(accept H <sub>0</sub> ) = $P(11 \le X \le 19)$<br>= 0.9965 - 0.5830 or 0.4170 - 0.0035<br>= 0.4135 cao                                                                                                                                                                                                                                                                                                                   | B1<br>M1<br>A1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Award M0 if no working seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Under $H_0$ , X is now Po(75) $\approx$ N(75,75)                                                                                                                                                                                                                                                                                                                                                                                               | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $z = \frac{91.5 - 75}{\sqrt{75}} = 1.91$ Prob from tables = 0.0281 $p\text{-value} = 0.056$ Insufficient evidence to reject $H_0$                                                                                                                                                                                                                                                                                                              | M1A1 A1 A1 B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Award M1A0 for incorrect or no continuity correction but FT further work. FT from line above FT from line above No cc gives $z = 1.96$ , $p = .05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | $H_0: p = 0.6; H_1: p < 0.6$ Let $X = \text{Number of games won}$ Under $H_0, X$ is $B(20,0.6)$ si Let $Y = \text{Number of games lost}$ Under $H_0, Y$ is $B(20,0.4)$ $p\text{-value} = P(X \le 7   (X \text{ is } B(20,0.4))$ $= P(Y \ge 13   Y \text{ is } B(20,0.4)$ $= 0.021$ Strong evidence to reject Gwilym's claim (or to accept Huw's claim). $X \text{ is now } B(80,0.6) \text{ (under } H_0) \approx N(48,19.2)$ $p\text{-value} = P(X \le 37   X \text{ is } N(48,19.2))$ $z = \frac{37.5 - 48}{\sqrt{19.2}}$ $= -2.40$ $p\text{-value} = 0.0082$ Very strong evidence to reject Gwilym's claim (or to accept Huw's claim). $E(X) = E(Y) = 1.2$ $E(U) = E(X)E(Y) = 1.44 \text{ cao}$ $Var(X) = Var(Y) = 0.96$ $E(X^2)(= E(Y^2)) = Var(X) + [E(X)]^2 = 2.4$ $Var(U) = E(X^2Y^2) - [E(XY)]^2$ $= 2.4$ $Var(U) = E(X^2Y^2) - [E(X)E(Y)]^2$ $= 3.69 \text{ cao}$ Under $H_0, X$ is $P(X \ge 20) = 0.1248$ Significance level = $0.2433$ $X$ is now $Poi(10)$ $P(accept H_0) = P(11 \le X \le 19) = 0.9965 - 0.5830 \text{ or } 0.4170 - 0.0035 = 0.4135 \text{ cao} Under H_0, X is now Po(75) \approx N(75,75) z = \frac{91.5 - 75}{\sqrt{75}} = 1.91 Prob from tables = 0.0281 p\text{-value} = 0.056$ | $H_0: p = 0.6; H_1: p < 0.6$ Let $X = \text{Number of games won}$ Under $H_0, X$ is $B(20,0.6)$ si Let $Y = \text{Number of games lost}$ Under $H_0, Y$ is $B(20,0.4)$ $p-value = P(X \le 7   (X \text{ is } B(20,0.6)))$ $= P(Y \ge 13   Y \text{ is } B(20,0.4)$ $= 0.021$ Strong evidence to reject Gwilym's claim (or to accept Huw's claim).  X is now $B(80,0.6)$ (under $H_0$ ) ≈ $N(48,19.2)$ $p-value = P(X \le 37   X \text{ is } N(48,19.2))$ $z = \frac{37.5 - 48}{\sqrt{19.2}}$ A1 $z = -2.40$ $p-value = 0.0082$ Very strong evidence to reject Gwilym's claim (or to accept Huw's claim). $E(X) = E(Y) = 1.2$ $E(U) = E(X)E(Y) = 1.44 \text{ cao}$ $Var(X) = Var(Y) = 0.96$ $E(X^2)(E(Y^2)) = Var(X) + [E(X)]^2 = 2.4$ $Var(U) = E(X^2Y^2) - [E(XY)]^2$ $= 3.69 \text{ cao}$ Under $H_0, X$ is $P(X \ge 20) = 0.1248$ Significance level = $0.2433$ X is now Poi(10) $P(accept H_0) = P(11 \le X \le 19)$ $= 0.9965 - 0.5830 \text{ or } 0.4170 - 0.0035$ $= 0.4135 \text{ cao}$ Under $H_0, X$ is now $P(75) \approx N(75,75)$ $z = \frac{91.5 - 75}{\sqrt{75}} = 1.91$ Prob from tables = $0.0281$ $p-value = 0.056$ B1  B1  B1  B1  B1  B1  B1  B1  B1  B |

| Ques | Solution                                                   | Mark      | Notes                              |
|------|------------------------------------------------------------|-----------|------------------------------------|
| 7(a) | $P(L \le 4) = P(A \le 4^2)$                                | M1        |                                    |
|      | $=\frac{16-15}{20-15}$                                     | A1        |                                    |
|      | = 0.2                                                      | <b>A1</b> |                                    |
| (b)  | $E(L) = E(A^{1/2})$                                        |           |                                    |
|      | $= \int_{15}^{20} a^{1/2} \times \frac{1}{5}  \mathrm{d}a$ | M1A1      | Limits can be left until next line |
|      | $=\frac{2}{15}\left[a^{3/2}\right]_{15}^{20}$              | A1        |                                    |
|      | =4.18                                                      | A1        | Do not accept $\sqrt{17.5} = 4.18$ |
| (c)  | $Var(L) = E(L^{2}) - [E(L)]^{2}$ $= 17.5 - 4.18^{2}$       | M1<br>A1  | FT their $E(L)$                    |
|      | = 0.03                                                     | A1        |                                    |

| Ques | Solution                                                                                                                 | Mark       | Notes                        |
|------|--------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|
| 1    | $\bar{x} = 52.0 \text{ si}$                                                                                              | B1         |                              |
|      | Variance estimate = $\frac{162480}{59} - \frac{3120^2}{60 \times 59} = 4.068$<br>(Accept division by 60 which gives 4.0) | M1A1       |                              |
|      | 90% confidence limits are                                                                                                |            |                              |
|      | $52\pm1.645\sqrt{4.068/60}$                                                                                              | M1A1       |                              |
|      | giving [51.6,52.4]                                                                                                       | A1         |                              |
| 2(a) | $H_0: \mu = 4.5; H_1: \mu \neq 4.5$                                                                                      | B1         |                              |
| (b)  | $\sum x = 43.6; \sum x^2 = 190.3428$                                                                                     | B1B1       |                              |
|      | UE of $\mu = 4.36$                                                                                                       | <b>B</b> 1 | No working need be seen      |
|      | UE of $\sigma^2 = \frac{190.3428}{9} - \frac{43.6^2}{90}$<br>= 0.0274(22)                                                | M1<br>A1   | Answer only no marks         |
| (c)  | $test-stat = \frac{4.36 - 4.5}{\sqrt{0.0274222/10}}$                                                                     | M1A1       | FT their values from (b)     |
|      | = -2.67 (Accept +2.67)<br>DF = 9 si                                                                                      | A1<br>B1   | Answer only no marks         |
|      | Crit value = 3.25                                                                                                        | B1         |                              |
|      | This result suggests that we should accept $H_0$ , ie that the mean weight is 4.5 kg                                     | <b>B</b> 1 | FT their <i>t</i> -statistic |
|      | because 2.67 < 3.25                                                                                                      | B1         |                              |
| 3(a) | $\hat{p} = \frac{654}{1500} = 0.436  \text{si}$                                                                          | B1         |                              |
|      | $ESE = \sqrt{\frac{0.436 \times 0.564}{1500}} = 0.0128  si$                                                              | M1A1       |                              |
|      | 95% confidence limits are                                                                                                | M1         | M1 correct form              |
|      | $0.436 \pm 1.96 \times 0.0128$ giving [0.41,0.46]                                                                        | A1<br>A1   | A1 correct z                 |
| (b)  | giving [0.41,0.40]                                                                                                       | 711        |                              |
|      | $\hat{p} = \frac{0.4348 + 0.4852}{2} = 0.46$                                                                             | B1         |                              |
|      | Number of people = $0.46 \times 1200 = 552$                                                                              | <b>B</b> 1 |                              |
|      | $0.4852 - 0.4348 = 2z\sqrt{\frac{0.46 \times 0.54}{1200}}$                                                               | M1A1       |                              |
|      | z = 1.75 Push from tables 0.0401 on 0.0500                                                                               | A1<br>A1   |                              |
|      | Prob from tables = 0.0401 or 0.9599<br>Confidence level = 92%                                                            | B1         | FT line above                |

| Ques         | Solution                                                                       | Mark       | Notes                                                                      |
|--------------|--------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------|
| 4(a)         | $H_0: \mu_a = \mu_b; H_1: \mu_a \neq \mu_b$                                    | <b>B1</b>  |                                                                            |
| (b)          | 0.115  0.096                                                                   |            |                                                                            |
|              | $SE = \sqrt{\frac{0.115}{80} + \frac{0.096}{70}}  (= 0.053)$                   | M1A1       |                                                                            |
|              | Test stat = $\frac{3.65 - 3.52}{0.053}$                                        |            |                                                                            |
|              | 0.022                                                                          | M1A1       |                                                                            |
|              | $= 2.45 \qquad (Accept 2.46)$ Tabular value                                    | A1         |                                                                            |
|              | Tabular value = $0.00714  (0.00695)$<br>p-value = $0.01428  (0.0139)$          | A1<br>A1   |                                                                            |
|              | Strong evidence to conclude that there is a                                    | AI         |                                                                            |
|              | difference in mean weight.                                                     | <b>B</b> 1 | FT their <i>p</i> -value                                                   |
|              | -                                                                              |            | Accept the conclusion that the                                             |
|              |                                                                                |            | Variety B mean is greater than the Variety A mean                          |
| (c)          | Estimates of the variances of the sample means are                             | <b>B</b> 1 | the variety it mean                                                        |
|              | used and not exact values.  The sample means are assumed to be normally        |            |                                                                            |
|              | distributed (using the Central Limit Theorem).                                 | <b>B1</b>  |                                                                            |
|              | ,                                                                              |            |                                                                            |
| 5(a)         | $\sum x = 42, \sum x^2 = 364, \sum y = 340.6, \sum xy = 2906.4$                | B2         | Minus 1 each error                                                         |
|              | $S_{xy} = 2906.4 - 42 \times 340.6 / 6 = 522.2$                                | <b>B</b> 1 |                                                                            |
|              | $S_{xx} = 364 - 42^2 / 6 = 70$                                                 | <b>B</b> 1 |                                                                            |
|              |                                                                                | M1         |                                                                            |
|              | $b = \frac{522.2}{70} = 7.46$                                                  | A1         | Answers only no marks                                                      |
|              | $a = \frac{340.6 - 7.46 \times 42}{6} = 4.55$                                  | M1<br>A1   |                                                                            |
|              | <i>u</i> – — — — — — 4.33                                                      | AI         |                                                                            |
| (b)(i)       | 11.1: 1.4: 4.51.41.05                                                          | D1         | ET their volves of and a h if                                              |
| <b>/</b> **> | Unbiased estimate = $a + 5b = 41.85$                                           | <b>B</b> 1 | FT their values of and <i>a</i> , <i>b</i> if answer between 33.9 and 49.9 |
| (ii)         | SE of $a + 5b = 0.5\sqrt{\frac{1}{6} + \frac{(5-7)^2}{70}}$ (0.2365)           | M1A1       | And FT their value of $S_{xx}$                                             |
|              | V 6 70                                                                         |            |                                                                            |
|              | 95% confidence limits for $\alpha + 5\beta$ are $41.85 \pm 1.96 \times 0.2365$ | m1A1       |                                                                            |
|              | giving [41.4,42.3]                                                             | A1         |                                                                            |
| (:::\)       |                                                                                |            |                                                                            |
| (iii)        | Test stat = $\frac{7.6 - 7.46}{2.00} - 2.34$                                   | M1A1       | FT their values of $b$ and $S_{xx}$ if                                     |
|              | Test stat = $\frac{7.6 - 7.46}{\sqrt{0.5^2/70}} = 2.34$                        | WIIAI      | possible.                                                                  |
|              | Critical value = $1.96$ or p-value = $0.01928$                                 | <b>A1</b>  | FT their test statistic                                                    |
|              | We conclude that $\beta = 7.6$ is not consistent                               | D1         | FT the line above                                                          |
|              | with the tabular values.                                                       | <b>B</b> 1 | 11 the line above                                                          |
|              |                                                                                |            |                                                                            |
|              |                                                                                |            |                                                                            |
|              |                                                                                | •          |                                                                            |

| Ques         | Solution                                                                                                                 | Mark             | Notes             |
|--------------|--------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 6(a)(i) (ii) | $E(Y) = kE(\overline{X}) = kE(X) = \frac{k\theta}{2}$ For an unbiased estimator, $k = 2$ . $Var(Y) = 4Var(\overline{X})$ | M1A1<br>A1<br>M1 |                   |
|              | $= \frac{4}{n} \text{Var}(X)$ $= \frac{4}{n} \times \frac{\theta^2}{12}$                                                 | A1               | FT their k        |
|              | $=\frac{\theta^2}{3n}$                                                                                                   | A1<br>A1         |                   |
| (b)(i)       | $SE = \frac{\theta}{\sqrt{3n}}$ Using $Var(Y) = E(Y^2) - [E(Y)]^2$                                                       | A1<br>M1         |                   |
|              | $E(Y^{2}) = \frac{\theta^{2}}{3n} + \theta^{2}$ $\neq \theta^{2} \text{ therefore not unbiased}$                         | A1<br>B1         | FT the line above |
| (ii)         | $E(Y^2) = \theta^2 \left(\frac{3n+1}{3n}\right)$                                                                         | M1               |                   |
|              | $E\left(\frac{3nY^2}{3n+1}\right) = \theta^2$ Therefore $\frac{3nY^2}{3n+1}$ is an unbiased estimator for $\theta^2$     | A1<br>A1         |                   |
|              | 3n+1                                                                                                                     |                  |                   |



WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: <a href="mailto:exams@wjec.co.uk">exams@wjec.co.uk</a> website: <a href="mailto:www.wjec.co.uk">www.wjec.co.uk</a>