Ques	Solution	Mark	Notes
1(a)	EITHER $P(A \cap B) = P(A) + P(B) - P(A \cup B)$	M1	Award M1 for using formula
	$= 0.2$ This is not equal to $P(A) \times P(B)$ therefore not	A1	
(b)	independent. OR	A1	
	Assume A,B are independent so that $P(A \cap B) = P(A) + P(B) - P(A)P(B)$ $= 0.58$	M1 A1	Award M1 for using formula
	Since $P(A \cup B) \neq 0.58$, A,B are not independent.	A1	
	$P(A \mid B') = \frac{P(A \cap B')}{P(B')}$	M1	Award M1 for using formula
	$=\frac{0.3-0.2}{0.6}$	A1	FT their $P(A \cap B)$ if independence not assumed
	$=\frac{1}{6}$	A1	Accept Venn diagram
2	np = 0.9, npq = 0.81	B1B1	
	Dividing, $q = 0.9$, $p = 0.1$ n = 9	M1A1 A1	
3(a)	P(1 of each) = $\frac{3}{9} \times \frac{3}{8} \times \frac{3}{7} \times 6 \text{ or } \begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} \div \begin{pmatrix} 9 \\ 3 \end{pmatrix}$	M1A1	M1A0 if 6 omitted
	$=\frac{9}{28}$	A1	
(b)	P(2 particular colour and 1 different) = $\frac{3}{9} \times \frac{2}{8} \times \frac{6}{7} \times 3$ or $\binom{3}{2} \times \binom{6}{1} \div \binom{9}{3}$	M1A1	M1A0 if 3 omitted
	$=\frac{3}{14}$	A1	Allow 3/28
	P(2 of any colour and 1 different) = $\frac{9}{14}$	B1	FT previous line
4(a)	Let X denote the number of goals scored in the first 15 minutes so that X is Po(1.5) si	B1	
	$P(X = 2) = \frac{e^{-1.5} \times 1.5^{2}}{2!}$ $= 0.251$	M1 A1	Award M0 if no working seen
(b)	$= 0.251$ $P(X > 2) = 1 - e^{-1.5} \left(1 + 1.5 + \frac{1.5^2}{2!} \right)$	M1A1	
	= 0.191	A1	

Ques	Solution	Mark	Notes
5(a)	Let $X =$ number of female dogs so X is B(20,0.55)	B1	si
(i)	$P(X = 12) = {20 \choose 12} \times 0.55^{12} \times 0.45^{8}$	M1	Accept 0.4143 – 0.2520 or 0.7480 – 0.5857
(ii)	$= 0.162$ Let $Y =$ number of male dogs so Y is $B(20,0.45)$ $P(8 \le X \le 16) = P(4 \le Y \le 12)$ $= 0.9420 - 0.0049 \text{ or } 0.9951 - 0.0580$ $= 0.9371$	M1 A1 A1A1 A1	Award M0 if no working seen
(b)	Let U = number of yellow dogs so U is B(60,0.05) \approx Po(3) P($U < 5$) = 0.8153	M1 m1A1	
6(a)	$P(head) = \frac{3}{4} \times \frac{1}{2} + \frac{1}{4} \times 1$ $= \frac{5}{8}$	M1A1 A1	M1 Use of Law of Total Prob (Accept tree diagram)
(b)(i) (ii)	$P(DH head) = \frac{1/4}{5/8}$ $= \frac{2}{5} cao$ EITHER	B1B1 B1	B1 num, B1 denom FT denominator from (a)
(II)	$P(head) = \frac{3}{5} \times \frac{1}{2} + \frac{2}{5} \times 1$ $= \frac{7}{10}$	M1A1 A1	M1 Use of Law of Total Prob (Accept tree diagram)
	OR $P(\text{Head}) = \frac{\frac{3}{4} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times 1}{\frac{5}{8}}$ $= \frac{7}{10}$	B1B1	B1 num, B1 denom FT denominator from (a)

Ques	Solution	Mark	Notes
7(a)	[0,0.4]	B1	Allow(0,0.4)
(b)	$E(X) = 0.1 + 0.6 + 3\theta + 0.8 + 5(0.4 - \theta)$ = 3.5 - 2\theta The range is [2.7,3.5]	M1 A1 A1	FT the range from (a)
(c)	$E(X^{2}) = 0.1 + 1.2 + 9\theta + 3.2 + 25(0.4 - \theta)$ $Var(X) = 0.1 + 1.2 + 9\theta + 3.2 + 25(0.4 - \theta)$ $- (3.5 - 2\theta)^{2}$ $= 2.25 - 2\theta - 4\theta^{2}$ $Var(X) = 1.5 \text{ gives}$ $4\theta^{2} + 2\theta - 0.75 = 0$	M1A1 M1 A1 M1 A1	Must be in terms of θ
	$4\theta + 2\theta - 0.75 = 0$ $16\theta^{2} + 8\theta - 3 = 0$ $(4\theta + 3)(4\theta - 1) = 0$ $\theta = 0.25$	M1 A1	Allow use of formula
8(a)	EITHER the sample space contains 64 pairs of which 8 are equal OR whatever number one of		
	them obtains, 1 number out of 8 obtained by the other one gives equality.	M1	
(1)	$P(\text{equal numbers}) = \frac{1}{8}$	A1	
(b)	The possible pairs are (4,8);(5,7);(6,6);(7,5);(8,4) EITHER the sample space contains 64 pairs of	B1	
	which 5 give a sum of 12 OR each pair has probability 1/64.	M1	
	$P(sum = 12) = \frac{5}{64}$	A1	
(c)	EITHER reduce the sample space to $(4,8);(5,7);(6,6);(7,5);(8,4)$ OR $P(\text{equal numbers}) = \frac{P(6,6)}{P(\text{sum}=12)} = \frac{1/64}{5/64}$	M1	
	Therefore P(equal numbers) = $\frac{1}{5}$	A1	

Ques	Solution	Mark	Notes
9(a)(i)	$P(0.4 \le X \le 0.6) = F(0.6) - F(0.4)$	M1	
	= 0.261	A1	
(ii)	The median <i>m</i> satisfies		
	$2m^3 - m^6 = 0.5$	B1	
	$2m^6 - 4m^3 + 1 = 0$		
	$m^3 = \frac{4 \pm \sqrt{8}}{4}$ (0.293)	M1A1	Award M1 for a valid attempt to
	m = 0.664	A1	solve the equation Do not award A1 if both roots
(b)(i)	Attempting to differentiate $F(x)$	M1	given
	$f(x) = 6x^2 - 6x^5$	A1	
(ii)	$E(X^{3}) = \int_{0}^{1} x^{3} (6x^{2} - 6x^{5}) dx$	M1A1	M1 for the integral of $x^3 f(x)$ A1 for completely correct
	$=\left[\frac{6x^{6}}{6}-\frac{6x^{9}}{9}\right]^{1}$	A1	although limits may be left until 2^{nd} line. FT their $f(x)$ if M1 awarded in (i)
	= 1/3	A1	