

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2014

Ques	Solution	Mark	Notes
1	$\bar{x} = \frac{405.6}{8} (= 50.7)$	B1	
	e e e e e e e e e e e e e e e e e e e		
	SE of $\overline{X} = \frac{4}{\sqrt{8}}$ (= 1.4142)	M1A1	
	90% conf limits are		
	$50.7 \pm 1.645 \times 1.4142$	M1A1	M1 correct form, A1 correct z.
	giving [48.4, 53.0] cao	A1	Award M0 if no working seen
2(a)	Upper quartile = mean + $0.6745 \times SD$	M1	
(b)	= 86.0	A1	
(0)	Let X=weight of an orange, Y=weight of a lemon $E(\Sigma X) = 1984$	B1	
	$Var(\Sigma X) = 512$	B1	
	$z = \frac{2000 - 1984}{\sqrt{512}} = 0.71$	3.71.4.1	Award MO if no working soon
	$z - \frac{1}{\sqrt{512}} = 0.71$	M1A1	Award M0 if no working seen
(c)	$Prob = 0.7611 \ cao$	A1	
	Let $U = X - 3Y$	M1 A1	
	E(U) = -7 $Var(U) = 64 + 9 \times 2.25 = 84.25$	M1A1	
	$Var(U) = 64 + 9 \times 2.23 = 64.23$ We require $P(U > 0)$	1,1111	
	-	m1A1	Award m0 if no working seen
	$z = \frac{0+7}{\sqrt{84.25}} = 0.76$		Tivare mo ii no working seen
	Prob = 0.2236	A1	
2()		7.4	
3(a)	$H_0: \mu_M = \mu_F; H_1: \mu_M \neq \mu_F$	B 1	
(b)	Let X = male weight, Y =female weight		
	$(\sum x = 39.2; \sum y = 46.6)$	D1D1	
	$\bar{x} = 4.9; \bar{y} = 4.66$	B1B1	
	SE of diff of means= $\sqrt{\frac{0.5^2}{8} + \frac{0.5^2}{10}}$ (0.237)	M1A1	
	Test statistic = $\frac{4.9 - 4.66}{0.237}$	m1	Award m0 if no working seen
			Tivate nio ni no working seen
	= 1.01 Prob from tables = 0.1562	A1 A1	
	Prob from tables = 0.1562 p-value = 0.3124	B1	FT line above
	Insufficient evidence to conclude that there is a		1 1 IIIIC above
	difference in mean weight between males and	B1	FT their <i>p</i> -value
	females.		_

Ques	Solution	Mark	Notes
4(a)(i)	$H_0: p = 0.6; H_1: p < 0.6$	B1	
4(a)(i) (ii) (b)	$H_0: p = 0.6; H_1: p < 0.6$ Let $X = \text{Number of games won}$ Under $H_0, X \text{ is } B(20,0.6)$ si Let $Y = \text{Number of games lost}$ Under $H_0, Y \text{ is } B(20,0.4)$ $p\text{-value} = P(X \le 7 (X \text{ is } B(20,0.6)))$ $= P(Y \ge 13 Y \text{ is } B(20,0.4)$ $= 0.021$ Strong evidence to reject Gwilym's claim (or to accept Huw's claim). $X \text{ is now } B(80,0.6) \text{ (under } H_0) \approx N(48,19.2)$ $p\text{-value} = P(X \le 37 X \text{ is } N(48,19.2))$ $z = \frac{37.5 - 48}{\sqrt{19.2}}$	B1 B1 B1 M1 A1 A1 B1 B1B1 M1 A1	Award M0 if no working seen FT on p-value Award M0 if no working seen Award M1A0A1 for incorrect or
	$\sqrt{19.2}$ = -2.40	A1	no continuity correction No cc; $z = -2.51$, $p = 0.00604$
	p-value = 0.0082	A1	36.5; $z = -2.62$, $p = 0.0044$
	Very strong evidence to reject Gwilym's claim (or to accept Huw's claim).	B1	FT on p-value only if less than 0.01
5(a)	E(X) = E(Y) = 1.2	B1	
	E(U) = E(X)E(Y) = 1.44 cao	B1	
(b)	$Var(X) = Var(Y) = 0.96$ $E(X^{2})(= E(Y^{2})) = Var(X) + [E(X)]^{2} = 2.4$ $Var(U) = E(X^{2}Y^{2}) - [E(XY)]^{2}$	B1 M1A1 M1	FT their values from (a)
	$= E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$ = 3.69 cao	A1 A1	
6(a)(i)	Under H_0 , X is Po(15) si $P(X \le 10) = 0.1185$; $P(X \ge 20) = 0.1248$ Significance level = 0.2433	B1 B1 B1	Award B1 for either correct
(ii)	X is now Poi(10) P(accept H ₀) = $P(11 \le X \le 19)$ = 0.9965 - 0.5830 or 0.4170 - 0.0035 = 0.4135 cao	B1 M1 A1 A1	Award M0 if no working seen
(b)	Under H_0 , X is now Po(75) \approx N(75,75)	B1	
	$z = \frac{91.5 - 75}{\sqrt{75}} = 1.91$ Prob from tables = 0.0281 $p\text{-value} = 0.056$ Insufficient evidence to reject H_0	M1A1 A1 A1 B1	Award M1A0 for incorrect or no continuity correction but FT further work. FT from line above FT from line above No cc gives $z = 1.96$, $p = .05$ 92.5 gives $z = 2.02$, $p = 0.0434$

Ques	Solution	Mark	Notes
7(a)	$P(L \le 4) = P(A \le 4^2)$	M1	
	$=\frac{16-15}{20-15}$	A1	
	= 0.2	A1	
(b)	$E(L) = E(A^{1/2})$		
	$= \int_{15}^{20} a^{1/2} \times \frac{1}{5} \mathrm{d}a$	M1A1	Limits can be left until next line
	$=\frac{2}{15}\left[a^{3/2}\right]_{15}^{20}$	A1	
	= 4.18	A1	Do not accept $\sqrt{17.5} = 4.18$
(c)	$Var(L) = E(L^2) - [E(L)]^2$	M1 A1	FT their E(<i>L</i>)
	$= 17.5 - 4.18^{2}$ $= 0.03$	A1	1 1 then L(L)