1. (a) 0 0
$$\pi/9$$
 -0.062202456 $2\pi/9$ -0.266515091 $\pi/3$ -0.693147181 $4\pi/9$ -1.750723994 (5 values correct) B2 (If B2 not awarded, award B1 for either 3 or 4 values correct) Correct formula with $h = \pi/9$ M1 $I \approx \frac{\pi/9}{3} \times \{0 + (-1.750723994)$ $+4[(-0.062202456) + (-0.693147181)]$ $+2(-0.266515091)\}$ $I \approx -5.305152724 \times (\pi/9) \div 3$ $I \approx -0.617282549$ $I \approx -0.6173$ (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{4\pi/9} \ln(\sec x) \, dx \approx 0.6173$$
 (f.t. candidate's answer to (a)) B1

2. (a)
$$7\csc^2\theta - 4(\csc^2\theta - 1) = 16 + 5\csc\theta$$

(correct use of $\cot^2 \theta = \csc^2 \theta - 1$) M1

An attempt to collect terms, form and solve quadratic equation in cosec θ , either by using the quadratic formula or by getting the expression into the form $(a \csc \theta + b)(c \csc \theta + d)$,

with $a \times c = \text{candidate's coefficient of cosec}^2 \theta$ and $b \times d = \text{candidate's}$

 $3\csc^2\theta - 3\csc\theta - 12 = 0 \Rightarrow (\csc\theta - 3)(3\csc\theta + 4) = 0$ \Rightarrow cosec $\theta = 3$, cosec $\theta = -\frac{4}{3}$

$$\Rightarrow \sin \theta = \frac{1}{3}, \sin \theta = -\frac{3}{4}$$
 (c.a.o.) A1

$$\theta = 19.47^{\circ}, 160.53^{\circ}$$
 B1

$$\theta = 311.41^{\circ}, 228.59^{\circ}$$
 B1 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

 $\sin \theta = +, -, \text{ f.t. for 3 marks}, \sin \theta = -, -, \text{ f.t. for 2 marks}$ $\sin \theta = +, +, \text{ f.t. for 1 mark}$

(b)
$$\sec \phi \ge 1$$
, $\csc \phi \ge 1$ and thus $4 \sec \phi + 3 \csc \phi \ge 7$

3. (a)
$$\underline{\underline{d}}(x^3) = 3x^2$$
 $\underline{\underline{d}}(1) = 0$ $\underline{\underline{d}}(\pi^2/4) = 0$ B1

$$\underline{d}(2x\cos y) = 2x(-\sin y)\underline{dy} + 2\cos y$$
B1

$$\frac{dx}{dx}$$

$$\underline{\mathbf{d}}(y^2) = 2y \, \underline{\mathbf{d}} y$$
 B1

$$\frac{dx}{dy} = \frac{3}{2 - \pi}$$
 (c.a.o.) B1

(b)
$$\frac{d^2y}{dx^2} = \frac{d(x^2y)}{dx} = x^2\frac{dy}{dx} + 2xy$$
B1

M1

Substituting
$$x^2y$$
 for $\frac{dy}{dx}$ in candidate's derived expression for $\frac{d^2y}{dx^2}$ M1
$$\frac{d^2y}{dx^2} = x^2(x^2y) + 2xy = x^4y + 2xy \qquad \text{(o.e.)} \qquad \text{(c.a.o.)} \qquad \text{A1}$$

4. (a) candidate's x-derivative =
$$\frac{1}{1+t^2}$$
 B1

candidate's y-derivative =
$$\frac{1}{t}$$
 B1

$$\frac{dy}{dx} = \frac{\text{candidate's } y\text{-derivative}}{\text{candidate's } x\text{-derivative}}$$
 M1

$$\frac{dy}{dx} = \frac{1+t^2}{t}$$
 A1

(b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\mathrm{d}y}{\mathrm{d}x} \right] = -t^{-2} + 1$$
 (o.e.) B1

Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right]$$
 : candidate's x-derivative M1

Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right]$$
 : candidate's x-derivative M1 $\frac{d^2y}{dx^2} = (-t^{-2} + 1)(1 + t^2)$ (o.e.) (f.t. one slip) A1 $\frac{d^2y}{dx^2} = 0 \Rightarrow t = 1$ (c.a.o.) A1

$$\frac{d^2y}{dx^2} = 0 \Rightarrow t = 1 \tag{c.a.o.}$$

$$\frac{d^2y}{dx^2} = 0 \Rightarrow x = \frac{\pi}{4}$$
 (f.t. candidate's derived value for t) A1

5. (*a*)

Correct shape for $y = \cos^{-1}x$ B1 A straight line with negative *y*-intercept and positive gradient intersecting once with $y = \cos^{-1}x$ in the first quadrant. B1

(b) $x_0 = 0.4$ $x_1 = 0.431855896$ (x_1 correct, at least 4 places after the point) B1 $x_2 = 0.424849379$ $x_3 = 0.426400166$ $x_4 = 0.426057413 = 0.4261$ (x_4 correct to 4 decimal places) B1 Let $h(x) = \cos^{-1}x - 5x + 1$ An attempt to check values or signs of h(x) at x = 0.42605, x = 0.42615 M1 $h(0.42605) = 4.24 \times 10^{-4} > 0$, $h(0.42615) = -1.86 \times 10^{-4} < 0$ A1

Change of sign $\Rightarrow \alpha = 0.4261$ correct to four decimal places

A1

6. (a) (i)
$$\frac{dy}{dx} = \frac{a + bx}{4x^2 - 3x - 5}$$
 (including $a = 1, b = 0$) M1
 $\frac{dy}{dx} = \frac{8x - 3}{4x^2 - 3x - 5}$ A1
(ii) $\frac{dy}{dx} = e^{\sqrt{x}} \times f(x)$ ($f(x) \neq 1, 0$) M1
 $\frac{dy}{dx} = e^{\sqrt{x}} \times \frac{1}{2} x^{-1/2}$ A1

(iii)
$$\frac{dy}{dx} = \frac{(a - b\sin x) \times m\cos x - (a + b\sin x) \times k\cos x}{(a - b\sin x)^2}$$

$$(m = \pm b, k = \pm b) \qquad M1$$

$$\frac{dy}{dx} = \frac{(a - b\sin x) \times b\cos x - (a + b\sin x) \times (-b)\cos x}{(a - b\sin x)^2}$$

$$\frac{dy}{dx} = \frac{2ab\cos x}{(a - b\sin x)^2}$$
A1

(b)
$$\underline{d}(\cot x) = \underline{d}(\tan x)^{-1} = (-1) \times (\tan x)^{-2} \times f(x) \qquad (f(x) \neq 1, 0) \qquad M1$$

$$\underline{d}(\tan x)^{-1} = (-1) \times (\tan x)^{-2} \times \sec^{2}x \qquad \qquad A1$$

$$\underline{d}(\tan x)^{-1} = -\csc^{2}x \qquad (convincing) \qquad A1$$

$$\underline{d}(\tan x)^{-1} = -\csc^{2}x \qquad (convincing) \qquad A1$$

7. (a) (i)
$$\int \frac{(7x^2 - 2)}{x} dx = \int 7x dx - \int \frac{2}{x} dx$$

Correctly rewriting as two terms and an attempt to integrate

$$\int \frac{(7x^2 - 2)}{x} dx = \frac{7}{2}x^2 - 2\ln x + c$$
 A1 A1

(ii)
$$\int \sin(^{2x}/_3 - \pi) \, dx = k \times \cos(^{2x}/_3 - \pi) + c$$
$$(k = -1, -\frac{3}{2}, \frac{3}{2}, -\frac{2}{3}) \qquad M1$$
$$\int \sin(^{2x}/_3 - \pi) \, dx = -\frac{3}{2} \times \cos(^{2x}/_3 - \pi) + c \qquad A1$$

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int (5x - 14)^{-1/4} dx = \underbrace{k \times (5x - 14)^{3/4}}_{3/4} \qquad (k = 1, 5, \frac{1}{5}) \qquad M1$$
$$\int (5x - 14)^{-1/4} dx = \frac{1}{5} \times \underbrace{(5x - 14)^{3/4}}_{3/4} \qquad A1$$

A correct method for substitution of the correct limits limits in an expression of the form $m \times (5x - 14)^{3/4}$ M1

$$\int_{3}^{6} (5x - 14)^{-1/4} dx = \frac{28}{15}$$
 (= 1.867)

(f.t. only for solutions of
$$\frac{28}{3}$$
 (= 9.333) and $\frac{140}{3}$ (= 46.667)

from
$$k = 1$$
, $k = 5$ respectively)

Note: Answer only with no working shown earns 0 marks

8. (a) Trying to solve either
$$3x - 5 \le 1$$
 or $3x - 5 \ge -1$ M1

$$3x - 5 \le 1 \Rightarrow x \le 2$$

$$3x - 5 \ge -1 \Rightarrow x \ge \frac{4}{3}$$
 (both inequalities) A1

Required range:
$$\frac{4}{3} \le x \le 2$$
 (f.t. one slip) A1

Alternative mark scheme

$$(3x-5)^2 \le 1$$

Critical values
$$x = \frac{4}{3}$$
 and $x = 2$

A1

Provinced ranges $\frac{4}{3}$ (for an elliptic critical values)

Required range:
$$^{4}/_{3} \le x \le 2$$
 (f.t. one slip in critical values) A1

(b)
$${}^{4}/_{3} \le 1/y \le 2$$
 (f.t. candidate's $a \le x \le b, a > 0, b > 0$) M1 ${}^{1}/_{2} \le y \le {}^{3}/_{4}$ (f.t. candidate's $a \le x \le b, a > 0, b > 0$) A1

9.

Correct shape, including the fact that the y-axis is an asymptote for

$$y = f(x)$$
 at $-\infty$

$$y = f(x) \text{ cuts } x\text{-axis at } (1, 0)$$

Correct shape, including the fact that x = -4 is an asymptote for

$$y = \frac{2}{3}f(x+4) \text{ at } -\infty$$

$$y = \frac{2}{3}f(x+4)$$
 cuts x-axis at (-3, 0) (f.t. candidate's x-intercept for $f(x)$) B1

The diagram shows that the graph of
$$y = f(x)$$
 is steeper than the graph of $y = 2f(x + 4)$ in the first quadrant B1

10. (a) Choice of
$$h$$
, k such that $h(x) = k(x) + c$, $c \ne 0$ M1

Convincing verification of the fact that $h'(x) = k'(x)$ A1

(b) (i)
$$y-3 = 2 \ln (4x+5)$$
 B1
An attempt to express candidate's equation as an exponential

M1

$$x = \underbrace{(e^{(y-3)/2} - 5)}_{4}$$
 (c.a.o.) A1

equation
$$x = \underbrace{(e^{(y-3)/2} - 5)}_{4}$$

$$f^{-1}(x) = \underbrace{(e^{(x-3)/2} - 5)}_{4}$$

(f.t. one slip in candidate's expression for x) **A**1

(ii)
$$D(f^{-1}) = [10, 14]$$
 B1 B1

(ii)
$$D(f^{-1}) = [10, 14]$$
 B1 B1
(iii) $gf(x) = e^{2 \ln(4x + 5) + 3}$ B1
 $e^{2 \ln(4x + 5)} = (4x + 5)^2$ B1
 $gf(x) = e^3(4x + 5)^2$ (c.a.o.) B1

$$gf(x) = e^{3}(4x + 5)^{2}$$
 (c.a.o.) B1