

GCE MARKING SCHEME

SUMMER 2016

MATHEMATICS – C1 0973/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – C1

SUMMER 2016 MARK SCHEME

1.	(a)	(i)	Gradient of $AB = \underline{\text{increase in } y}$		M1
			increase in x Gradient of $AB = \frac{1}{2}$	(or equivalent)	A1
		(ii)	A correct method for finding the equation candidate's value for the gradient of Equation of AB : $y-2=\frac{1}{2}(x-4)$	AB.	M1
			(f.t. the candidate's value for Equation of AB : $2y = x$ (or equiv	or the gradient of AB)	A1
			(f.t. one error if both		A1
	(<i>b</i>)		ect method for finding the length of A	AB(AC)	M1
		$AB = \gamma$			A1
		AC =	/80		A1
		$k = {}^{5}/_{4}$		(c.a.o.)	A1
	(c)	(i) (ii)	Equation of BD : $x = 4$ Either:		B1
		(11)	An attempt to find the gradient of a	line perpendicular to A	В
			using the fact that the product of the lines = -1 .		
			An attempt to find the gradient of th	e line passing through	C
			and D using the coordinates of C and	dD.	M1
			$-2 = \frac{m-5}{4-(-2)}$ (o.e.)		
			(Equating candidate's derived expre	essions for gradient, f.t.	3.54
			candidate's gradient of AB)		M1
			m = -7 Or:	(c.a.o.)	A1
			An attempt to find the gradient of a	line perpendicular to A	R
			using the fact that the product of the		
			lines $= -1$.	8	M1
			An attempt to find the equation of li	ne perpendicular to AB	
			passing through $C(\text{or }D)$ (f.t. candim $m-5=-2[4-(-2)]$	1 1	M1
			(substituting coordinates of unused)	point in the candidate's	;
			(derived equation)	M1
			m = -7	(c.a.o.)	A 1

© WJEC CBAC Ltd.

2.
$$\frac{5\sqrt{7} + 4\sqrt{2}}{3\sqrt{7} + 5\sqrt{2}} = \frac{(5\sqrt{7} + 4\sqrt{2})(3\sqrt{7} - 5\sqrt{2})}{(3\sqrt{7} + 5\sqrt{2})(3\sqrt{7} - 5\sqrt{2})}$$
 M1

Numerator:
$$15 \times 7 - 25 \times \sqrt{7} \times \sqrt{2} + 12 \times \sqrt{2} \times \sqrt{7} - 20 \times 2$$
 A1

$$\frac{5\sqrt{7} + 4\sqrt{2}}{3\sqrt{7} + 5\sqrt{2}} = 5 - \sqrt{14}$$
 (c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $3\sqrt{7} + 5\sqrt{2}$

3. y-coordinate at P = 11

$$\frac{dy}{dx} = 12 \times (-2) \times x^{-3} + 7$$

An attempt to substitute x = 2 in candidate's derived expression for $\frac{dy}{dx}$ m1

Use of candidate's derived numerical value for $\frac{dy}{dx}$ as gradient in the equation

Equation of tangent to C at P: y-11 = 4(x-2) (or equivalent)

(f.t. only candidate's derived value for y-coordinate at P) A1

(f.t. one error) B1

4.
$$(\sqrt{3}-1)^5 = (\sqrt{3})^5 + 5(\sqrt{3})^4(-1) + 10(\sqrt{3})^3(-1)^2 + 10(\sqrt{3})^2(-1)^3 + 5(\sqrt{3})(-1)^4 + (-1)^5$$
 (five or six terms correct) B2 (If B2 not awarded, award B1 for three or four correct terms) $(\sqrt{3}-1)^5 = 9\sqrt{3}-45+30\sqrt{3}-30+5\sqrt{3}-1$ (six terms correct) B2 (If B2 not awarded, award B1 for three, four or five correct terms)

© WJEC CBAC Ltd. 2

 $(\sqrt{3}-1)^5 = -76 + 44\sqrt{3}$

5. (a)
$$a = 2$$
, $b = -12$ B1 B1

(b)
$$x^2 + 4x - 8 = 2x + 7$$
 M1
An attempt to collect terms, form and solve the quadratic equation in x either by correct use of the quadratic formula or by writing the equation in the form $(x + n)(x + m) = 0$, where $n \times m =$ candidate's constant m1

$$x^{2} + 2x - 15 = 0 \Rightarrow (x - 3)(x + 5) = 0 \Rightarrow x = 3, x = -5$$

(both values, c.a.o.) A1

When x = 3, y = 13, when x = -5, y = -3

(both values, f.t. one slip) A1

(c)

A positive quadratic graph

M1

Minimum point (-2, -12) marked

(f.t. candidate's values for a, b)

A1 **B**1

A straight line with positive gradient and positive y-intercept

Both points of intersection (-5, -3), (3, 13) marked

(f.t candidate's solutions to part(b)) B1

An expression for $b^2 - 4ac$, with at least two of a, b or c correct **6.** (a) M1

$$b^{2} - 4ac = 8^{2} - 4 \times 9 \times (-2k)$$

$$b^{2} - 4ac > 0$$
m1

m1

 $k > -\frac{8}{9}$ (o.e.)

[f.t. only for $k < \frac{8}{9}$ from $b^2 - 4ac = 8^2 - 4 \times 9 \times (2k)$] **A**1

Attempting to rewrite the inequality in the form $5x^2 - 7x - 6 \ge 0$ and an (*b*) attempt to find the critical values M1

Critical values x = -0.6, x = 2

A1

A2

A statement (mathematical or otherwise) to the effect that

 $x \le -0.6$ or $2 \le x$ (or equivalent)

(f.t. candidate's derived critical values)

Deduct 1 mark for each of the following errors

the use of strict inequalities

the use of the word 'and' instead of the word 'or'

© WJEC CBAC Ltd.

7. (a)

Concave down curve with
$$x$$
-coordinate of maximum = 1 B1 y -coordinate of maximum = 9 B1

Both points of intersection with *x*-axis

(b)
$$g(x) = f(-x)$$
 B1
 $g(x) = f(x+2)$ B1

8. (a)
$$y + \delta y = 10(x + \delta x)^2 - 7(x + \delta x) - 13$$
 B1
Subtracting y from above to find δy M1
 $\delta y = 20x\delta x + 10(\delta x)^2 - 7\delta x$ A1
Dividing by δx and letting $\delta x \to 0$ M1
 $\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 20x - 7$ (c.a.o.) A1

(b)
$$\frac{dy}{dx} = 4 \times \frac{1}{2} \times x^{-1/2} + (-1) \times 45 \times x^{-2}$$

$$Either 9^{-1/2} = \frac{1}{3} \text{ or } 9^{-2} = \frac{1}{81} \text{ (or equivalent fraction)}$$

$$B1, B1$$

$$\frac{dy}{3} = \frac{1}{81} \text{ (or equivalent)}$$

$$B1$$

$$B1$$

$$B1$$

© WJEC CBAC Ltd. 4

dx = 9

9. (*a*) Either: showing that f(2) = 0Or: trying to find f(r) for at least two values of rM1 $f(2) = 0 \implies x - 2$ is a factor **A**1 $f(x) = (x-2)(8x^2 + ax + b)$ with one of a, b correct M1 $f(x) = (x-2)(8x^2 + 18x - 5)$ **A**1 f(x) = (x-2)(4x-1)(2x+5)(f.t. only $8x^2 - 18x - 5$ in above line) **A**1

Special case

Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 3 marks

- (b) Either: $f(2.25) = 0.25 \times 8 \times 9.5$ (at least two terms correct, f.t. candidate's derived expression for f) M1 f(2.25) = 19 [f.t. only for f(2.25) = -1.25 from f(x) = (x-2)(4x+1)(2x-5)] A1 Or: f(2.25) = 91.125 + 10.125 92.25 + 10 (at least two of the first three terms correct) M1 f(2.25) = 19 (c.a.o.) A1
- 10. (a) V = x(24 2x)(9 2x) M1 $V = 4x^3 - 66x^2 + 216x$ (convincing) A1

maximum value (for $0 \le x \le 4.5$)

(b) $\frac{dV}{dx} = 12x^2 - 132x + 216$ Putting derived $\frac{dV}{dx} = 0$ $\frac{dV}{dx} = 2, (9)$ M1 $\frac{dV}{dx} = 2 = 2, (9)$ Stationary value of V at x = 2 is 200A correct method for finding nature of the stationary point yielding a

0973/01 GCE Mathematics C1 MS Summer 2016/LG

© WJEC CBAC Ltd. 5

GCE MARKING SCHEME

SUMMER 2016

Mathematics - C2 0974/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – C2

SUMMER 2016 MARK SCHEME

1.	3 3.75 4.5 5.25 6 (If B2 not award	0.6032888847 0.5666103111 0.5348655099 0.5067878888 0.4815614791 led, award B1 for either	(5 values correct) 3 or 4 values correct)	B2
	Correct formula with $h = I \approx 0.75 \times \{0.603288884\}$			M1
			655099 + 0.5067878888)}
	$I \approx 4.301377783 \times 0.75$ $I \approx 1.613016669$ $I \approx 1.613$	÷ 2	(f.t. one slip)	A1
	Special case for candidate	tes who put $h = 0.6$		
	3	0.6032888847		
	3.6	0.5734992875		
	4.2	0.5470655771		
	4.8	0.5232474385		
	5.4	0.5015353186		
	6	0.4815614791	(all values correct)	B1
	Correct formula with $h =$			M1
	$I \approx 0.6 \times \{0.6032888847$			
	2		2474385 + 0.501535318	6)}
	$I \approx 5.375545607 \times 0.6 \div$	2		
	$I \approx 1.612663682$			
	$I \approx 1.613$		(f.t. one slip)	A 1

Note: Answer only with no working shown earns 0 marks

2. (a)
$$6\sin^2\theta + 1 = 2(1 - \sin^2\theta) - 2\sin\theta$$

(correct use of $\cos^2 \theta = 1 - \sin^2 \theta$) M1

An attempt to collect terms, form and solve quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta + b)(c \sin \theta + d)$,

with $a \times c =$ candidate's coefficient of $\sin^2 \theta$ and $b \times d =$ candidate's constant m1

$$8\sin^2\theta + 2\sin\theta - 1 = 0 \Rightarrow (4\sin\theta - 1)(2\sin\theta + 1) = 0$$

$$\Rightarrow \sin \theta = \underline{1}, \quad \sin \theta = -\underline{1}$$
 (c.a.o.) A1

$$\theta = 14.48^{\circ}, 165.52^{\circ}$$
 B1

$$\theta = 210^{\circ}, 330^{\circ}$$
 B1, B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

 $\sin \theta = +, -, \text{ f.t. for 3 marks}, \sin \theta = -, -, \text{ f.t. for 2 marks}$ $\sin \theta = +, +, \text{ f.t. for 1 mark}$

(b)
$$3x - 57^{\circ} = -39^{\circ}$$
, 141° , 321° , 501° (one correct value) B1 B1 B1 B1

Note: Subtract (from final three marks) 1 mark for each additional root in range, ignore roots outside range.

(c)
$$\sin \phi \ge -1, \cos \phi \ge -1$$
 and thus $2 \sin \phi + 4 \cos \phi > -7$

3. (a)
$$(x+5)^2 = 7^2 + x^2 - 2 \times 7 \times x \times -\frac{3}{5}$$
 (correct use of cos rule) M1

$$x^2 + 10x + 25 = 49 + x^2 + 8.4x$$
 A1

$$1.6x = 24 \Rightarrow x = 15$$
 (convincing) A1

$$\begin{array}{ccc}
\text{(b)} & \sin B\hat{A}C = \frac{4}{5} \\
\hline
\text{B1}
\end{array}$$

Area of triangle $ABC = \frac{1}{2} \times 7 \times 15 \times \frac{4}{5}$

(substituting the correct values in the correct places in the area formula, f.t. candidate's derived value for $\sin B\hat{A}C$)

A1

A1

(c)
$$\underline{1} \times 20 \times AD = 42$$

 $\underline{2}$ (f.t. candidate's derived value for area of triangle *ABC*) M1
 $AD = 4.2$ (cm)
(f.t. candidate's derived value for area of triangle *ABC*) A1

4. (a) This is an A.P. with
$$a = 6$$
, $d = 2$ (s.i.) M1

(i)
$$20$$
th term = $6 + 2 \times 19$

$$20th term = 44$$

(b) (i)
$$t_{11} + t_{14} = 50$$
 B1

(ii)
$$S_{24} = \frac{24}{2} \times 50$$
 M1
 $S_{24} = 600$ A1

5. (a)
$$S_n = a + ar + ... + ar^{n-1}$$
 (at least 3 terms, one at each end) B1 $rS_n = ar + ... + ar^{n-1} + ar^n$ (multiply first line by r and subtract) M1 $(1-r)S_n = a(1-r^n)$ (convincing) A1 $1-r$

(b) Either:
$$\frac{a(1-r^5)}{1-r} = 275$$

Or: $a + ar + ar^2 + ar^3 + ar^4 = 275$ B1

$$\frac{a}{1-r} = 243$$
 B1

An attempt to solve these equations simultaneously by eliminating a M1

$$243r^5 = -32$$
 (or $-243r^5 = 32$) A1
 $r = -\frac{2}{3}$ (c.a.o.) A1

$$a = 405$$
 (f.t. candidate's derived value for r) A1

6. (a)
$$3 \times \frac{x^{3/4}}{3/4} - 9 \times \frac{x^{7/2}}{7/2} + c$$
 (-1 if no constant term present)

(b) Area = $\int_{1}^{4} \left[2x^2 + \frac{6}{x^2} \right] dx$ (use of integration) M1

 $\frac{2x^3}{3} + 6 \times (-1) \times x^{-1}$ (correct integration) A1, A1

Area = $(128/3 - 6/4) - (2/3 - 6/1)$ (an attempt to substitute limits)

Area = $93/2$ or $46 \cdot 5$ (c.a.o.) A1

7. (a) Let $p = \log_a x$ (relationship between log and power) B1

 $x^n = a^{pn}$ (the laws of indices) B1

 $\therefore \log_a x^n = pn$ (relationship between log and power)

 $\therefore \log_a x^n = pn = n \log_a x$ (convincing) B1

(b) Either:

 $(3x + 1) \log_{10} 4 = \log_{10} 22$ (taking logs on both sides and using the power law) M1

 $x = \log_{10} 22 - \log_{10} 4$ (o.e.) A1

 $3 \log_{10} 4$ (f.t. one slip, see below) A1

Or:

 $3x + 1 = \log_4 22$ (rewriting as a log equation) M1

 $x = \log_4 22 - 1$ A1

 $x = 0.41$ (f.t. one slip, see below) A1

Note: an answer of $x = -0.41$ from $x = \frac{\log_{10} 4 - \log_{10} 22}{3 \log_{10} 4}$ carns M1 A0 A1

an answer of $x = 1.08$ from $x = \frac{\log_{10} 42 + \log_{10} 4}{2}$

B1, B1

Note: Answer only with no working shown earns 0 marks

earns M1 A0 A1

 $3 \log_{10} 4$

(c)	Correct use of pow	er law		B1
	At least one correc	t use of additi	on or subtraction law	B1
	$\log_d(36/9z) = 1$	(o.e.)	(f.t. one incorrect term)	B1
	$z = \underline{4}$		(c.a.o.)	B1
	d			

6.

8.	(<i>a</i>)	(i)	A(-3, 10)	B1
			A correct method for finding the radius	M1
			Radius = $\sqrt{50}$	A1

(ii) Use of shortest distance =
$$OA$$
 - radius M1
Shortest distance = $\sqrt{109} - \sqrt{50} = 3.37$
(f.t. candidate's derived radius) A1

(b) (i) An attempt to substitute
$$(3x-1)$$
 for y in the equation of C_1 M1 $x^2-6x+8=0$ (or $10x^2-60x+80=0$) A1 $x=2, x=4$ (correctly solving candidate's quadratic, both values) A1 Points of intersection P and Q are $(2, 5), (4, 11)$ (c.a.o.) A1

(ii)
$$BP^2(BQ^2) = 20$$
 or $BP(BQ) = \sqrt{20}$
(f.t. candidate's derived coordinates for P or Q) B1
Use of $(x-6)^2 + (y-7)^2 = BP^2(BQ^2)$
(f.t. candidate's derived coordinates for P or Q) M1
 $(x-6)^2 + (y-7)^2 = 20$ (c.a.o.) A1

9. Area of sector
$$AOB = \frac{1}{2} \times r^2 \times 2.15$$

Area of sector $BOC = \frac{1}{2} \times r^2 \times (\pi - 2.15)$

B1

 $\frac{1}{2} \times r^2 \times 2.15 - \frac{1}{2} \times r^2 \times (\pi - 2.15) = 26$
 $r^2 = \frac{52}{4.3 - \pi}$
 $r = 6.7$

A1

0974/01 GCE Mathematics C2 MS Summer 2016/LG

GCE MARKING SCHEME

SUMMER 2016

Mathematics – C3 0975/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS - C3

SUMMER 2016 MARK SCHEME

1. 0 1 (a) $\pi/20$ 1.025402923 $\pi/10$ 1.111347018 $3\pi/20$ 1.296432399 $\pi/5$ 1.695307338 (5 values correct) **B2** (**If B2 not awarded**, award B1 for either 3 or 4 values correct) Correct formula with $h = \pi/20$ M1 $I \approx \pi/20 \times \{1 + 1.695307338 + 4(1.025402923 + 1.296432399) + 1.496432399\}$ 2(1.111347018) $I \approx 14.20534263 \times (\pi/20) \div 3$ $I \approx 0.7437900006$ $I \approx 0.74379$ (f.t. one slip) **A**1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{\pi/5} e^{\sec^{2}x} dx = e^{1} \times \int_{0}^{\pi/5} e^{\tan^{2}x} dx$$
 M1
$$\int_{0}^{\pi/5} e^{\sec^{2}x} dx \approx 2.02183$$
 (f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

2. (a)
$$3 \csc \theta (\csc \theta - 1) = 5 (\csc^2 \theta - 1) - 9$$
 (correct use of $\cot^2 \theta = \csc^2 \theta - 1$) M1
An attempt to collect terms, form and solve quadratic equation in $\csc \theta$, either by using the quadratic formula or by getting the expression into the form $(a \csc \theta + b)(c \csc \theta + d)$, with $a \times c = \text{candidate's coefficient of } \cos c^2 \theta$ and $b \times d = \text{candidate's } \cot \theta$ constant $\cot \theta = 0$ cosec $\theta = 0$ cosec

 $\theta = 196.6^{\circ}, 343.4^{\circ}$

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\sin \theta = +, -, \text{ f.t. for 3 marks}, \sin \theta = -, -, \text{ f.t. for 2 marks}$

 $\sin \theta = +, +, \text{ f.t. for } 1 \text{ mark}$

B1 B1

(b) Correct use of cosec
$$\phi = 1 \text{ and sec } \phi = 1 \text{ (o.e.)}$$
 M1
$$\tan \phi = -2 \text{ A1}$$

$$\phi = 146.31^{\circ}, 326.31^{\circ}$$
 (f.t. for negative $\tan \phi$) A1

3.
$$\underline{d}(x^2) = 2x \qquad \underline{d}(2x) = 2 \qquad \underline{d}(21) = 0$$

$$\underline{d}(3xy) = 3x\underline{dy} + 3y$$

$$\underline{d}(2y^3) = 6y^2\underline{dy}$$

$$\underline{d}(x) \qquad \underline{d}(x) \qquad \underline{$$

4. (a) candidate's x-derivative =
$$12 \cos 3t$$
 B1
candidate's y-derivative = $-6 \sin 3t$ B1
$$\frac{dy}{dx} = \frac{\text{candidate's y-derivative}}{\text{candidate's x-derivative}}$$

$$\frac{dy}{dx} = -\frac{1}{2} \tan 3t$$
 (c.a.o.) A1

(b) (i)
$$\frac{d}{dt} \left[\frac{dy}{dx} \right] = -\frac{3}{2} \sec^2 3t$$
 (f.t. $\frac{dy}{dx} = k \tan 3t$ or $k \frac{\sin 3t}{\cos 3t}$ only) B1

Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div \text{candidate's } x\text{-derivative}$$
 M1
 $\frac{d^2y}{dx^2} = -\frac{1}{8} \sec^3 3t \text{ or } \frac{-1}{8 \cos^3 3t}$ (c.a.o.) A1

(ii)
$$\frac{d^2y}{dx^2} = -\frac{1}{y^3}$$
 (f.t. $\frac{d^2y}{dx^2} = m \sec^3 3t$ or $\frac{m}{\cos^3 3t}$ only) B1

- 5. (a) Denoting the end points of the chord by A, BLength of arc $AB = 3\theta$ B1 Length of chord $AB = 2 \times 3 \times \sin(\theta/2)$ (convincing) B1 $3\theta + 6\sin(\theta/2) = 13.5 \Rightarrow \theta + 2\sin(\theta/2) = 4.5$ (convincing) B1
 - (b) $\theta_0 = 2.5$ $\theta_1 = 2.602030761$ (θ_1 correct, at least 2 places after the point) B1 $\theta_2 = 2.572341396$ $\theta_3 = 2.580466315 = 2.58$ (θ_3 correct to 2 decimal places) B1 Let $f(\theta) = \theta + 2\sin(\theta/2) - 4.5$ An attempt to check values or signs of $f(\theta)$ at $\theta = 2.575$, $\theta = 2.585$ M1 $f(2.575) = -4.72 \times 10^{-3} < 0$, $f(2.585) = 8.05 \times 10^{-3} > 0$ A1 Change of sign $\Rightarrow \theta = 2.58$ correct to two decimal places A1

6. (a)
$$\frac{dy}{dx} = \frac{f(x)}{\cos x}$$
 (including $f(x) = 1$) M1
 $\frac{dy}{dx} = -\frac{\sin x}{\cos x}$ A1

$$\frac{dy}{dx} = -\tan x \quad \text{(f.t. only for } \tan x \text{ from } \underline{dy} = \underline{\sin x} \text{)}$$
 A1

(b)
$$\frac{dy}{dx} = \frac{1/3}{1 + (x/3)^2} \quad \text{or} \quad \frac{1}{1 + (x/3)^2} \quad \text{or} \quad \frac{1/3}{1 + (1/3)x^2}$$

$$\frac{dy}{dx} = \frac{1/3}{1 + (x/3)^2}$$

$$\frac{dy}{dx} = \frac{3}{9 + x^2} \quad \left[\text{f.t. only for } \frac{dy}{dx} = \frac{9}{9 + x^2} \quad \text{from } \frac{1}{1 + (x/3)^2} \right]$$
A1

(c)
$$\frac{dy}{dx} = e^{6x} \times f(x) + (3x - 2)^4 \times g(x)$$

$$\frac{dy}{dx} = e^{6x} \times f(x) + (3x - 2)^4 \times g(x)$$

$$\frac{dy}{dx} = e^{6x} \times f(x) + (3x - 2)^4 \times g(x)$$

$$\frac{dy}{dx} = e^{6x} \times 12 \times (3x - 2)^3 + (3x - 2)^4 \times 6e^{6x}$$

$$\frac{dy}{dx} = e^{6x} \times 12 \times (3x - 2)^3 + (3x - 2)^4 \times 6e^{6x}$$
(all correct)
$$\frac{dy}{dx} = e^{6x} \times 18x \times (3x - 2)^3$$
(c.a.o.)
A1

7. (a) (i)
$$\int_{0}^{7} e^{5-3/4x} dx = k \times 7e^{5-3/4x} + c \qquad (k = 1, -3/4, 4/3, -4/3) \qquad M1$$
$$\int_{0}^{7} e^{5-3/4x} dx = -\frac{28}{3} e^{5-3/4x} + c \qquad A1$$

(ii)
$$\int \sin(2x/3 + 5) \, dx = k \times \cos(2x/3 + 5) + c$$
$$(k = -1, -\frac{2}{3}, \frac{3}{2}, -\frac{3}{2}) \qquad M1$$
$$\int \sin(2x/3 + 5) \, dx = -\frac{3}{2} \times \cos(2x/3 + 5) + c \qquad A1$$

(iii)
$$\int \frac{8}{(9-10x)^3} dx = \frac{8}{-2k} \times (9-10x)^{-2} + c$$

$$\int \frac{8}{(9-10x)^3} dx = \frac{2}{5} \times (9-10x)^{-2} + c$$
A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int \frac{1}{4x+3} dx = k \times \ln(4x+3)$$
 (k = 1, 4, \frac{1}{4}) M1
\int \frac{1}{4} dx = 1/4 \times \ln (4x+3) A1

$$k \times [\ln (6 \times 4 + 3) - \ln (4a + 3)] = 0.1986$$
 $(k = 1, 4, \frac{1}{4})$ m1

$$\frac{27}{4a+3} = e^{0.7944}$$
 (o.e.) (c.a.o.) A1

$$a = 2.3$$
 (f.t. $a = 4.8$ for $k = 1$ and $a = 5.7$ for $k = 4$)

- 8. (a) Choice of a, b, c, d such that a is a factor of c and b is a factor of dM1

 Correctly verifying that the candidate's a, b, c, d are such that (a + b) is **not** a factor of (c + d) and a statement to the effect that this is the case

 A1
 - (b) Trying to solve 5x + 4 = -7x M1 Trying to solve 5x + 4 = 7x M1 x = -1/3, x = 2 (c.a.o.) A1

$$x = -1/3$$
 (c.a.o.) A1

Alternative mark scheme

$$(5x + 4)^2 = (-7x)^2$$
 (squaring both sides) M1
 $24x^2 - 40x - 16 = 0$ (at least two coefficients correct) A1
 $x = -1/3, x = 2$ (c.a.o.) A1
 $x = -1/3$ (c.a.o.) A1

(c) (i)
$$a = 5, -3$$
 B1
(ii) $b = -\frac{2}{3}$ B1

9. (a) $y - 8 = e^{4 - x/3}$. B1

An attempt to express equation as a logarithmic equation and to

isolate *x* M1

 $x = 3[4 - \ln(y - 8)]$ (c.a.o.) A1

 $f^{-1}(x) = 3 [4 - \ln(x - 8)]$

(f.t. one slip in candidate's expression for x) A1

(b) $D(f^{-1}) = [9, \infty)$ B1 B1

10. (a) $hh(x) = \frac{4 \times 4x + 3 + 3}{5x - 4}$ M1 $5 \times 4x + 3 - 4$ 5

 $hh(x) = \frac{16x + 12 + 15x - 12}{20x + 15 - 20x + 16}$ A1

hh(x) = x (convincing) A1

(b) $h^{-1}(x) = h(x)$ B1 $h^{-1}(-1) = h(-1) = \frac{1}{9}$ (awarded only if first B1 awarded) B1

GCE MARKING SCHEME

SUMMER 2016

Mathematics – C4 0976/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – C4

SUMMER 2016 MARK SCHEME

(a) $f(x) = \frac{A}{(2x-1)} + \frac{B}{(x-3)^2} + \frac{C}{(x-3)}$ 1. (correct form) M1 $17 + 4x - x^2 \equiv A(x-3)^2 + B(2x-1) + C(x-3)(2x-1)$

(correct clearing of fractions and genuine attempt to find coefficients)

m1

A = 3, B = 4, C = -2(all three coefficients correct) A2 If A2 not awarded, award A1 for at least one correct coefficient

(b) $f'(x) = -\frac{6}{(2x-1)^2} - \frac{8}{(x-3)^3} + \frac{2}{(x-3)^2}$ (o.e.)

(f.t. candidate's derived values for A, B, C)

(second term) B1

(both the first and third terms) **B**1

- (i) $(1+2x)^{-1/2} = 1 x + \frac{3}{2}x^2$ 2. (a) (1-x) $(^{3}/_{2}x^{2})$ **B**1 **B**1
 - (ii) $|x| < \frac{1}{2} \text{ or } -\frac{1}{2} < x < \frac{1}{2}$ **B**1
 - $6-6x+9x^2 = 4+15x-x^2 \Rightarrow 10x^2-21x+2=0$ (f.t. only candidate's quadratic expansion in (a)) M1x = 0.1(f.t. only candidate's quadratic expansion in (a)) **A**1
- (a) $4x^3 + 2x^3 \underline{dy} + 6x^2 y 12y^3 \underline{dy} = 0$ \underline{dx} $\begin{bmatrix} 2x^3 \underline{dy} + 6x^2y \\ dx \end{bmatrix}$ $\begin{bmatrix} 4x^3 - 12y^3 \underline{dy} \\ 4x \end{bmatrix}$ 3. **B**1 **B**1

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x^3 + 3x^2y}{6y^3 - x^3}$

(intermediary line required in order to be convincing) **B**1

 $2x^{3} + 3x^{2}y = -2(6y^{3} - x^{3})$ y(3x² + 12y²) = 0 $3x^{2} + 12y^{2} = 0 \Rightarrow x = 0, y = 0 \text{ but not on curve}$ M1**A**1

A1

 $y = 0 \Rightarrow x = \pm 2 \Rightarrow (2, 0), (-2, 0)$ (both points) **A**1

$$\frac{1-\tan^2 x}{6\tan x} + \frac{16}{\tan^2 x} = 0 \quad \text{(correct use of } \cot^2 x = \frac{1}{\tan^2 x}) \quad \text{M1}$$

$$\frac{6\tan x}{1-\tan^2 x} + \frac{16}{\tan^2 x} = 0 \quad \text{(correct use of } \cot^2 x = \frac{1}{\tan^2 x})$$

$$3\tan^3 x - 8\tan^2 x + 8 = 0$$

$$(\text{intermediary line required in order to be convincing}) \quad \text{A1}$$

$$(\text{ii)} \quad 3\tan^3 x - 8\tan^2 x + 8 = (\tan x - 2)(3\tan^2 x + a \tan x + b)$$

$$x + 63 \cdot 4^{\circ}, 56 \cdot 9^{\circ}, 139 \cdot 9^{\circ}$$

$$(\text{rounding off errors are only penalised once}) \quad \text{A1 A1 A1}$$

$$(b) \quad R = 25 \quad \text{B1}$$

$$\cot^2 24 \quad \text{(f.t. candidate's value for } R) \quad \text{M1}$$

$$\alpha = 16 \cdot 26^{\circ} \quad \text{(c.a.o)} \quad \text{A1}$$

$$24 \quad \text{(f.t. candidate's value for } R) \quad \text{M1}$$

$$\alpha = 16 \cdot 26^{\circ} \quad \text{(f.t. candidate's derived value for } R) \quad \text{M1}$$

$$25 \cos(\theta + \alpha) = k \text{ has no solutions if } k < -25 \text{ or } k > 25$$

$$(\text{f.t. candidate's derived value for } R) \quad \text{A1}$$

$$25 \cos(\theta + \alpha) = k \text{ has no solutions if } k < -25 \text{ or } k > 25$$

$$(\text{f.t. candidate's derived value for } R) \quad \text{A1}$$

$$4 \cos^2 2 + \cos^2$$

 $6 \tan x + 16 \cot^2 x = 0$ (o.e.)

4.

(a)

(i)

6. (a)
$$u = 2x + 1 \Rightarrow du = 2dx$$
 (o.e.) B1
 $dv = e^{-3x} dx \Rightarrow v = -\frac{1}{2} e^{-3x}$ (o.e.) B1

$$\int (2x + 1) e^{-3x} dx = -\frac{1}{2} e^{-3x} \times (2x + 1) - \int -\frac{1}{2} e^{-3x} \times 2dx$$
 (o.e.) M1

$$\int (2x + 1) e^{-3x} dx = -\frac{1}{2} e^{-3x} \times (2x + 1) - \frac{1}{2} e^{-3x} + c$$
 (c.a.o.) A1

$$\int \sqrt{(4+5\tan x)} \, dx = \int k \times u^{1/2} \, du \qquad (k = \frac{1}{5} \text{ or } 5) \qquad M1$$

b)
$$\int \frac{\sqrt{(4+5\tan x)}}{\cos^2 x} dx = \int k \times u^{1/2} du \qquad (k = \frac{1}{5} \text{ or } 5)$$
 M1
$$\int a \times u^{1/2} du = a \times \frac{u^{3/2}}{3/2}$$
 B1

Either: Correctly inserting limits of 4, 9 in candidate's $bu^{3/2}$ Correctly inserting limits of 0, $\pi/4$ in candidate's $b(4 + 5 \tan x)^{3/2}$ or: M1

$$\int_{1}^{\pi/4} \frac{\sqrt{4 + 5 \tan x}}{\cos^2 x} dx = \frac{38}{15} = 2.53$$
 (c.a.o.) A1

Note: Answer only with no working earns 0 marks

7. (a)
$$\frac{\mathrm{d}V}{\mathrm{d}t} = -kV^3$$
 B1

(b)
$$\int \frac{dV}{V^3} = -\int k \, dt \qquad \text{(o.e.)}$$

$$-\frac{V^{-2}}{2} = -kt + c \qquad A1$$

$$c = -\frac{A^{-2}}{2}$$
 (c.a.o.) A1

A1

$$c = -\frac{A^{-2}}{2}$$

$$2V^{2} = \frac{2A^{2}}{(2A^{2}k)t + 1} \Rightarrow V^{2} = \frac{A^{2}}{bt + 1}$$
(c.a.o.)
where $b = 2A^{2}k$

(c) Substituting
$$t = 2$$
 and $V = \underline{A}$ in an expression for V^2 M1

$$b = \underbrace{\frac{3}{2}}_{2} \left[\text{ or } k = \underbrace{\frac{3}{4A^{2}}}_{4A^{2}} \right]$$
Substituting $V = \underbrace{\frac{A}{4}}_{4}$ in an expression for V^{2} with candidate's value for b

or expression for
$$k$$
 M1
 $t = 10$ (c.a.o) A1

(a) (i)
$$\mathbf{AB} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$$
 B1
(ii) Use of $\mathbf{a} + \lambda \mathbf{AB}$, $\mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$, $\mathbf{b} + \lambda \mathbf{AB}$ or $\mathbf{b} + \lambda (\mathbf{b} - \mathbf{a})$ to find vector equation of AB M1
 $\mathbf{r} = \mathbf{i} + 3\mathbf{j} - 3\mathbf{k} + \lambda (2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ (o.e.)
(f.t. if candidate uses his/her expression for \mathbf{AB}) A1
(b) (i) $1 + 2\lambda = -1 - 2\mu$ $3 + \lambda = 8 + \mu$ (o.e.)
(comparing coefficients, at least one equation correct) M1
(at least two equations correct) A1
Solving the first two equations simultaneously m1
(f.t. for all 3 marks if candidate uses his/her expression for \mathbf{AB}) $\lambda = 2, \mu = -3$ (o.e.) (c.a.o.) A1
 $p = 10$ from third equation (f.t. candidate's derived values for λ and μ provided the third equation is correct) A1
(ii) An attempt to evaluate $(-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \cdot (6\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$ M1
 $(-2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \cdot (6\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}) = -1 \neq 0 \Rightarrow L$ and $(6\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$ not perpendicular A1
Volume $= \pi \int_{\pi/5}^{1} (\cos x + \sin x)^2 dx$ B1
 $\int_{\pi/5}^{2\pi/5} (\cos^2 x + \sin^2 x) dx = x$ or $\left[\frac{x}{2} + \frac{1}{2} \sin 2x\right] + \left[\frac{x}{2} - \frac{1}{4} \sin 2x\right]$ B1
 $\int_{\pi/5}^{2\pi/5} (\cos^2 x + \sin^2 x) dx = x$ or $\left[\frac{x}{2} + \frac{1}{4} \sin 2x\right] + \left[\frac{x}{2} - \frac{1}{4} \sin 2x\right]$ B1
 $\int_{\pi/5}^{2\pi/5} (\cos^2 x + \sin^2 x) dx = x$ or $\left[\frac{x}{2} + \frac{1}{4} \sin 2x\right] + \left[\frac{x}{2} - \frac{1}{4} \sin 2x\right]$ B1
 $\int_{\pi/5}^{2\pi/5} (\cos^2 x) dx = -\frac{1}{2} \cos^2 x$ or $\frac{1}{2} \sin^2 x$ or $-\frac{1}{2} \cos^2 x$ B1

Note: Answer only with no working earns 0 marks

Substitution of limits in candidate's integrated expression

2

(awarded only if at least two of the previous three marks have been awarded)

M1

A1

(c.a.o.)

Volume = 3.73

8.

9.

10. Assume that there is a real value of x such that

$$\begin{vmatrix} x + \underline{1} \mid < 2 \\ | x | \end{vmatrix}$$

Then squaring both sides, we have:

$$x^{2} + \frac{1}{x^{2}} + 2 < 4$$
B1
$$x^{2} + \frac{1}{x^{2}} - 2 < 0$$
B1
$$(x-1)^{2} < 0$$
, which is impossible since the square of a real number

B1

 $\left(\begin{array}{c} x - \underline{1} \\ x \end{array}\right)^2 < 0$, which is impossible since the square of a real number

cannot be negative

Alternative Mark Scheme

Assume that there is a real value of x such that

$$\begin{vmatrix} x + \underline{1} \mid < 2 \\ \mid x \mid \end{vmatrix}$$

Then squaring both sides, we have:
$$x^2 + \frac{1}{x^2} + 2 < 4$$
B1
$$x^4 - 2x^2 + 1 < 0$$
B1
$$(x^2 - 1)^2 < 0$$
, which is impossible since the square of a real number cannot be negative

0976/01 GCE Mathematics C4 MS Summer 2016/LG

GCE MARKING SCHEME

SUMMER 2016

Mathematics - FP1 0977/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – FP1

SUMMER 2016 MARK SCHEME

Ques	Solution	Mark	Notes
1	$f(x+h) - f(x) = \frac{(x+h)^2}{(x+h+1)} - \frac{x^2}{x+1}$	M1A1	
	$=\frac{(x+h)^2(x+1)-x^2(x+h+1)}{(x+h+1)(x+1)}$	A1	
	$= \frac{x^3 + x^2 + 2hx^2 + 2hx + h^2x + h^2 - x^3 - hx^2 - x^2}{(x+h+1)(x+1)}$	A1	
	$= \frac{hx^2 + 2hx + h^2x + h^2}{(x+h+1)(x+1)}$	A1	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$= \lim_{h \to 0} \frac{x^2 + 2x + hx + h}{(x+h+1)(x+1)}$	M1	
	$=\frac{x^2+2x}{(x+1)^2}$	A1	
2(a)	The rotation matrix = $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	The translation matrix = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	$\mathbf{T} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	M1	
(b)	$= \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
	The fixed point satisfies $\begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ $-y+1=x; x+2=y$	M1	FT their T
	$(x,y) = \left(-\frac{1}{2}, \frac{3}{2}\right) \text{cao}$	A1 m1A1	
	(2 2)		

Ques	Solution	Mark	Notes
3	$S_n = \sum_{r=1}^n r^3 + \sum_{r=1}^n r^2$	M1	
	$=\frac{n^2(n+1)^2}{4}+\frac{n(n+1)(2n+1)}{6}$	A1A1	
	$=\frac{n(n+1)(3n(n+1) + 2(2n+1))}{12}$	m1	m1 for attempting to combine and take out two factors
	$=\frac{n(n+1)}{12}(3n^2+7n+2)$	A1	
	$=\frac{n(n+1)(n+2)(3n+1)}{12}$	A1	
4 (a)	$ z_1 = 2$; arg $(z_1) = \frac{5\pi}{6}$	B1B1	
	$ z_2 = \sqrt{2}$; arg $(z_2) = \frac{\pi}{4}$	B1B1	
(b)	EITHER		
	$ w = \frac{ z_1 ^2}{ z_2 } = \frac{4}{\sqrt{2}}$	M1A1	FT from (a)
	$arg(w) = 2 arg(z_1) - arg(z_2) = \frac{17\pi}{12}$	M1A1	
	$w = \frac{4}{\sqrt{2}}\cos\left(\frac{17\pi}{12}\right) + \frac{4}{\sqrt{2}}\sin\left(\frac{17\pi}{12}\right)i$	M1	
	=-0.73-2.73i	A1	
	OR		
	$z_1^2 = 2 - 2\sqrt{3}i$	(M1A1)	
	$\frac{z_1^2}{z_2} = \frac{2 - 2\sqrt{3}i}{(1+i)} \times \frac{1-i}{1-i}$	(M1)	
	$=\frac{2-2\sqrt{3}-(2\sqrt{3}+2)i}{2}$	(A1A1)	A1 numerator, A1 denominator
	$= \frac{2}{2}$ = -0.73 - 2.73i	(A1)	
	OR		
	$z_1^2 = 2 - 2\sqrt{3}i$ $a + ib = \frac{2 - 2\sqrt{3}i}{1 + i}$	M1A1	
	1 1		
	$(a+ib)(1+i) = 2 - 2\sqrt{3}i$	M1	
	$a-b+i(a+b) = 2-2\sqrt{3}i$	A1 A1	
	$a-b=2; a+b=-2\sqrt{3}$	AI	
	$\frac{z_1^2}{z_2} = -0.73 - 2.73i$	A1	

Ques	Solution	Mark	Notes
5(a)(i)	$\det \mathbf{M} = 2(\lambda + 2) + 5(-\lambda) + \lambda(-\lambda^2)$	M1A1	Or equivalent
(ii)	= $4-3\lambda-\lambda^3$ Substituting $\lambda = 1$, det M =0 (therefore singular). $4-3\lambda-\lambda^3 = (1-\lambda)(\lambda^2+\lambda+4)$ The other two roots (of det M = 0) are complex since $b^2-4ac=-15$ so no other real values of λ	B1 M1A1	Do not accept unsupported answers
(iii)	result in a singular M . cao Using row operations, $ \begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} $ The first two (complete) rows are identical therefore consistent.	M1 A1	
(b)	Let $z = \alpha$. Then $y = \alpha + 1$. and $x = -3\alpha - 1$. Now, $\mathbf{M} = \begin{bmatrix} 2 & 5 & -1 \\ 0 & -1 & -1 \\ -1 & 2 & 1 \end{bmatrix}$	M1 A1 A1	
	Cofactor matrix = $\begin{bmatrix} 1 & 1 & -1 \\ -7 & 1 & -9 \\ -6 & 2 & -2 \end{bmatrix}$ $\begin{bmatrix} 1 & -7 & -6 \\ 1 & 1 & 2 \end{bmatrix}$	M1 A1	Award M1 if at least 5 elements correct
	Adjugate matrix = $\begin{bmatrix} 1 & 1 & 2 \\ -1 & -9 & -2 \end{bmatrix}$ $Det \mathbf{M} = 8$ $\begin{bmatrix} 1 & -7 & -6 \end{bmatrix}$	A1 B1	
	$\mathbf{M}^{-1} = \frac{1}{8} \begin{bmatrix} 1 & -7 & -6 \\ 1 & 1 & 2 \\ -1 & -9 & -2 \end{bmatrix}$	A1	FT from adjugate matrix and determinant

Ques	Solution	Mark	Notes
6	Let the roots be $\alpha, \frac{1}{\alpha}, \beta$.	M1	
	lpha Then,	IVII	
	$\alpha + \frac{1}{\alpha} + \beta = -\frac{b}{a} (i)$		
	$1 + \alpha \beta + \frac{\beta}{\alpha} = \frac{c}{a} \text{(ii)}$	A1	
	$\beta = -\frac{d}{a}$ (iii)		
	From (i), $\alpha + \frac{1}{\alpha} = -\frac{b}{a} + \frac{d}{a}$	M1A1	M1 attempting to eliminate one
	From (ii), $\alpha + \frac{1}{\alpha} = \left(\frac{c}{a} - 1\right)\left(-\frac{a}{d}\right)$	A1	of the parameters
	Therefore $d-b$ $(c-a)(a)$	A 1	
	$\frac{d-b}{a} = \left(\frac{c-a}{a}\right)\left(-\frac{a}{d}\right)$	A1	
	$d^2 - bd = a^2 - ac$		
7	The result to be proved gives		
	$x_1 = 2 + 1 = 3$ which is correct so true for $n = 1$.	B1	
	Let the result be true for $n = k$, ie		
	$x_k = 2^k + k$	M1	
	Consider (for $n = k + 1$) $x_{k+1} = 2(2^k + k) - k + 1$	M1A1	
	$= 2^{k+1} + (k+1)$	A1	
	Hence true for $n = k \Rightarrow$ true for $n = k + 1$ and		Award A1 for completely
	since true for $n = 1$, the result is proved by induction.	A1	correct solution
8(a)	Taking logs,		
o(a)		M1	
	Differentiating,		
	$\frac{f'(x)}{f(x)} = \cos x \ln x + \frac{\sin x}{x}$	A1A1	
	$f'(x) = (x)^{\sin x} (\cos x \ln x + \frac{\sin x}{x})$	A1	
(b)		B1	
	Consider $f'(0.35) = -0.00451$		Accept – 0.00646
	f'(0.36) = 0.0156 The change of sign indicates a root between 0.35	B1	Accept 0.0223
	and 0.36.	B1	
<u> </u>		1	

Ques Solution Mar	Notes
Ques Solution Mar $ \begin{aligned} u + iv &= (x + i[y + 2])^2 \\ &= x^2 + 2ix(y + 2) - (y + 2)^2 \\ &= quating real and imaginary parts, \\ u &= x^2 - (y + 2)^2 ; v = 2x(y + 2) \end{aligned} $ (b) Substituting $y = x - 1$, $u = x^2 - (x + 1)^2 = -(2x + 1)$ $v = 2x(x + 1)$ Eliminating x , $v = -(u + 1)\left(-\frac{(u + 1)}{2} + 1\right)$ M1 $= \left(\frac{u^2 - 1}{2}\right) \text{ or equivalent}$ A1	FT from (a) provided equally difficult

GCE MARKING SCHEME

SUMMER 2016

Mathematics - FP2 0978/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – FP2

SUMMER 2016 MARK SCHEME

Ques	Solution	Mark	Notes
1	Putting $u = x^2$,		
	$du = 2xdx, [0, \sqrt{2}] \text{ becomes } [0,2]$	B1B1	
	$I = \frac{1}{2} \int_{0}^{2} \frac{du}{\sqrt{(16 - u^{2})}}$	M1	Valid attempt to substitute
	$=\frac{1}{2}\left[\sin^{-1}\left(\frac{u}{4}\right)\right]_0^2$	A1	
	$=\frac{1}{2}\sin^{-1}\left(\frac{1}{2}\right)$	A1	
	$=\frac{\pi}{12}$	A1	
2(a)(i)	$(3-i)^2 = 9-6i-1=8-6i$	M1A1	
(ii)	$(3-i)^4 = (8-6i)^2 = 64-96i-36 = 28-96i$	B1	Convincing
(b)	The 4^{th} roots are $3 - i$ and $-3 + i$ and $1 + 3i$, $-1 - 3i$	B1 B1B1	Must start with 3 – i and rotate
3(a)	$\cos 4\theta + i\sin 4\theta = (\cos \theta + i\sin \theta)^4$	M1	
	$= 4i\cos^3\theta\sin\theta - 4i\cos\theta\sin^3\theta$	m1	
	+ real terms		
	$\sin 4\theta = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$ $\sin 4\theta$	A1	
	$\frac{\sin 4\theta}{\sin \theta} = 4\cos \theta (1 - \sin^2 \theta - \sin^2 \theta)$	A1	
	$=4\cos\theta(1-2\sin^2\theta)$		
(b)	EITHER		
	$\int_{\pi/6}^{\pi/4} \frac{\sin 4\theta}{\sin \theta} d\theta = 4 \int_{\pi/6}^{\pi/4} \cos \theta \cos 2\theta d\theta$	M1	
	$=2\int_{\pi/6}^{\pi/4} [\cos\theta + \cos 3\theta] d\theta$	A1	
	$=2\left[\sin\theta+\frac{\sin 3\theta}{3}\right]_{\pi/6}^{\pi/4}$	A1	This line must be seen
	= 0.219	A1	
	OR $\int_{\pi/6}^{\pi/4} \frac{\sin 4\theta}{\sin \theta} d\theta = 4 \int_{\pi/6}^{\pi/4} (1 - 2\sin^2 \theta) d\sin \theta$	(M1A1)	
	$=4\left[\sin\theta-\frac{2}{3}\sin^3\theta\right]_{\pi/6}^{\pi/4}$	(A1)	This line must be seen
	= 0.219	(A1)	

Ques	Solution	Mark	Notes
4	Substituting $t = \tan\left(\frac{x}{2}\right)$,		
	$\frac{2t}{1+t^2} + \frac{2t}{1-t^2} + t = 0$	M1A1	
	$\frac{2t(1-t^2) + 2t(1+t^2) + t(1+t^2)(1-t^2)}{(1+t^2)(1-t^2)} = 0$	A1	
	$\frac{2t - 2t^3 + 2t + 2t^3 + t - t^5}{(1 + t^2)(1 - t^2)} = 0$	A1	
	$t(5-t^4)=0$	A1	
	t = 0	B1	FT for $t^4 = n$
	$\frac{x}{2} = 0 + n\pi \text{ giving } x = 2n\pi$	B1	Penalise – 1 for use of degrees
	$t = \sqrt[4]{5}$	B1	throughout
	$\frac{x}{2} = 0.981 + n\pi \text{ giving } x = 1.96 + 2n\pi$	B1	
	$t = -\sqrt[4]{5}$	B1	
	$\frac{x}{2} = -0.981 + n\pi \text{ giving } x = -1.96 + 2n\pi$	B1	
5(a)	Because $f(-x)$ is neither equal to $f(x)$ or $-f(x)$, f is neither even nor odd.	B1	
(b)	Let		
	$\frac{3x^2 + x + 6}{(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{Bx + C}{x^2+4}$	M1	
	$=\frac{A(x^2+4)+(x+2)(Bx+C)}{(x+2)(x^2+4)}$	A1	
	A = 2; B = 1; C = -1	A1A1A1	
(c)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{2}{x+2} dx + \int_{0}^{1} \frac{x}{x^{2}+4} dx - \int_{0}^{1} \frac{1}{x^{2}+4} dx$	M1	FT their values from (a)
	$= 2[\ln(x+2)]_0^1 + \frac{1}{2}[\ln(x^2+4)]_0^1 - \frac{1}{2}[\tan^{-1}(\frac{x}{2})]_0^1$	A1A1A1	
	$= 2 \ln 3 - 2 \ln 2 + \frac{1}{2} \ln 5 - \frac{1}{2} \ln 4 - \frac{1}{2} \tan^{-1} \left(\frac{1}{2}\right)$	A1	
	= 0.691	A1	

Ques	Solution	Mark	Notes
6(a)	If $x = a \sec \theta$ and $y = b \tan \theta$, then		
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \sec^2 \theta - \tan^2 \theta = 1$	M1A1	
	showing that the point $(a\sec\theta, b\tan\theta)$ lies on the		
(b)(i)	hyperbola. EITHER		
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec\theta \tan\theta, \frac{\mathrm{d}y}{\mathrm{d}\theta} = \sec^2\theta$		
		M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sec^2 \theta}{\sec \theta \tan \theta}$		
		A1	
	$= \csc \theta$	A1	
	OR dv	(M1)	
	$2x - 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	(1411)	
		(A1)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$		
	$=\frac{\sec\theta}{\theta}=\csc\theta$	(A1)	
	$=\frac{1}{\tan\theta}=\cos \cot\theta$		
	The gradient of the normal is $-\sin\theta$.	M1	
	The equation of the normal is		
	$y - \tan \theta = -\sin \theta (x - \sec \theta)$	A1	
	$x\sin\theta + y = 2\tan\theta$		
(ii)	The normal meets the <i>x</i> -axis where $y = 0$, ie		
	$x = 2\sec\theta, y = 0$	B1	
	The coordinates of the midpoint of PQ are		
	$\left(\frac{\sec\theta+2\sec\theta}{2},\frac{\tan\theta+0}{2}\right)$, ie	M1	
	/	M1	
	$\left(\frac{3}{2}\sec\theta,\frac{1}{2}\tan\theta\right)$ cao	A1	
	EITHER		
	This is the parametric form of a hyperbola	A1	
	showing that the locus of the midpoint is a hyperbola	AI	FT from midpoint
	OR		
	$x = \frac{3}{2}\sec\theta, y = \frac{1}{2}\tan\theta$		FT from midpoint
	$\Rightarrow \sec \theta = \frac{2}{3}x, \tan \theta = 2y$		
	$\Rightarrow \frac{x^2}{9/4} - \frac{y^2}{1/4} = 1$		
	This is the equation of a hyperbola showing that	(A1)	
	the locus of the midpoint is a hyperbola		
	Since $a = 3/2$ and $b = \frac{1}{2}$,		
	Eccentricity = $\sqrt{\frac{1.5^2 + 0.5^2}{1.5^2}} = \frac{\sqrt{10}}{3}$	M1A1	
	The coordinates of the foci are $\left(\pm \frac{\sqrt{10}}{2}, 0\right)$	A1	
	/ /		

Ques	Solution	Mark	Notes
7(a)	x = 1 cao	B1	Penalise – 1 for extra asymptotes
<i>a</i> .)	y = 1 cao	B1	
(b)			
	f(0) = 8 giving the point $(0,8)$ cao	B1	
	$f(x) = 0 \Rightarrow x = 2$ giving the point (2,0) cao	B1	
(c)	$3r^2(r^3-1) - 3r^2(r^3-9)$ ($21r^2$)	3.71.4.1	
	$f'(x) = \frac{3x^2(x^3 - 1) - 3x^2(x^3 - 8)}{(x^3 - 1)^2} \left(= \frac{21x^2}{(x^3 - 1)^2} \right)$	M1A1	
		A1	
	The stationary point is $(0,8)$. f'(x) > 0 on either side of the stationary point.	M1	
	It is a point of inflection.		
	it is a point of inflection.	A1	
(d)	V		
(e)(i)	O 1 cao	G1 G1 G1	RH branch approach to asymptotes LH branch approach to asymptotes Stationary point of inflection
(0)(1)	$f(-2) = 16/9, \ f(2) = 0$	B 1	
	$f(S) = (-\infty, 0] \cup [16/9, \infty)$ cao	B1	
(ii)			
	$f(x) = -2 \Rightarrow x = \sqrt[3]{10/3}$	M1A1	
	$f(x) = 2 \Rightarrow x = -\sqrt[3]{6}$	A1	Accept 1.82 for $\sqrt[3]{6}$
	$f^{-1}(S) = (-\infty, -\sqrt[3]{6}] \cup [\sqrt[3]{10/3}, \infty)$ cao	A1	and 1.49 for $\sqrt[3]{10/3}$
	J () () J [,)		

GCE MARKING SCHEME

SUMMER 2016

Mathematics - FP3 0979/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – FP3 SUMMER 2016 MARK SCHEME

Owas	SUMMER 2016 MARK SCHEME Solution Monk Notes				
Ques	Solution	Mark	Notes		
1	Consider $x = r \cos \theta$	M1			
	$= \cos \theta (1 + 2 \tan \theta) = \cos \theta + 2 \sin \theta$	A1			
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta + 2\cos\theta$	B1			
	(The tangent is perpendicular to the initial line				
		M1			
	where) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 0$.	1411			
	$\sin\theta = 2\cos\theta$				
	$\tan \theta = 2$	A1			
	$\theta = 1.11 (63^{\circ})$	A1	or $0 \le \theta \le \frac{\pi}{4} \Rightarrow 0 \le \tan \theta \le 1$		
	This lies outside the domain for the curve, hence		4		
	no point at which the tangent is perpendicular to the initial line.	A1			
2 (a)	$f(x) = \cos x + \cosh x$				
	$f'(x) = -\sin x + \sinh x$				
	$f''(x) = -\cos x + \cosh x$	B1			
	$f'''(x) = \sin x + \sinh x$				
	$f^{(4)}(x) = \cos x + \cosh x (= f(x))$	B1	Convincing		
(b)(i)	f(0) = 2				
	f'(0) = 0				
	f''(0) = 0	B1			
	f'''(0) = 0	D1			
	$f^{(4)}(0) = 2$				
	This pattern repeats itself every four differentiations so $f^{(n)}(0) = 2$ if n is a multiple of		Accept unsimplified expressions		
	4 and zero otherwise. (Therefore the only terms	B1	- 11000pt unionip 111100 Unip 100010110		
	in the Maclaurin series are those for which the	Di			
	power is a multiple of 4.)				
(::)					
(ii)	The first three terms are $2, \frac{x^4}{12}, \frac{x^8}{20160}$	B1			
(c)(i)					
	Substituting the series,				
	$24 + x^4 + \frac{x^8}{1680} - x^4 = 36$	3.54			
		M1			
	$x^8 = 20160$	A1			
	x = 3.45	A1			
(ii)	Let $g(x) = 12(\cos x + \cosh x) - x^4 - 36$				
	Consider $g(3.445) = -0.0507$				
	g(3.455) = 0.2312	B1			
	The change of sign confirms that the value of the				
	root is 3.45 correct to 3 significant figures.	B1			
		1			

Ques	Solution	Mark	Notes
3	Putting $t = \tan\left(\frac{x}{2}\right)$		
	(2) [0, π /2] becomes [0,1]	B1	
	$dx = \frac{2dt}{1+t^2}$	Di	
		B1	
	$I = \int_{0}^{1} \frac{2dt/(1+t^{2})}{3+5(1-t^{2})/(1+t^{2})}$	M1A1	
	$= \int_{0}^{1} \frac{2dt}{8 - 2t^{2}}$	A1	
	$=\int_{0}^{1}\frac{\mathrm{d}t}{4-t^{2}}$	A1	
	$= \frac{1}{4} \left[\ln \left(\frac{2+t}{2-t} \right) \right]_0^1$	A1	
	$= \frac{1}{4} \ln 3 = \ln 3^{1/4}$	A1	
4 (a)	The equation is $\cosh 2\theta - 8\cosh \theta - k = 0$		
	Substituting for $\cosh 2\theta$,	M1	
	$2\cosh^2\theta - 8\cosh\theta - (k+1) = 0$	A1	
	$\cosh\theta = \frac{8 \pm \sqrt{72 + 8k}}{4}$	m1	
	4 If $k \le -9$, $72 + 8k \le 0$ so no real solutions.	A1	
(b)		AI	
	If $k = -8$,		
	$\cosh \theta = \frac{8 \pm \sqrt{8}}{4} = 1.292, 2.707$	M1A1	
	$\theta = 0.75, 1.65$	A1	Allow ±
(c)(i)	There is a repeated root when $k = -9$	B 1	
(ii)	There will be only one real root if the smaller root of the quadratic equation in (a) ≤ 1 , ie	M1	
	$\frac{8 - \sqrt{72 + 8k}}{4} < 1$	A1	
	$\frac{4}{\sqrt{72+8k}} > 4$	М 1	
	k > -7	M1 A1	Allow $k = -9$ to be included here

Ques	Solution	Mark	Notes
5(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\sin x}{1 + \cos x}$	B 1	
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \frac{\sin^2 x}{\left(1 + \cos x\right)^2}$	M1	
	$= \frac{1 + 2\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}$	A1	
	$=\frac{2+2\cos x}{\left(1+\cos x\right)^2}$	A1	
	_	711	
	$=\frac{2}{(1+\cos x)}$		
(b)	METHOD 1		
	$\pi^{1/2}$ 1		
	Arc length = $\sqrt{2} \int_{0}^{\pi/2} \sqrt{\frac{1}{(1+\cos x)}} dx$	M1	
	$= \sqrt{2} \int_{0}^{\pi/2} \sqrt{\frac{1}{2\cos^{2}(x/2)}} dx$	m1	
	0 .		
	$= \int_{0}^{\pi/2} \sec(x/2) dx$	A1	
	U		
	$= 2 \left[\ln \left(\sec(x/2) + \tan(x/2) \right) \right]_0^{\pi/2}$	A1	
	$= 2\ln(1+\sqrt{2})$	A1	Award this A1 if the 2 is missing
	$= \ln(3 + 2\sqrt{2})$	A1	
	METHOD 2		
	Arc length = $\sqrt{2} \int_{0}^{\pi/2} \sqrt{\frac{1}{(1+\cos x)}} dx$	M1	
	•		
	Put $t = \tan\left(\frac{x}{2}\right)$; $dx = \frac{2dt}{1+t^2}$	m1	
	Arc length = $\sqrt{2} \int_{0}^{1} \sqrt{\frac{1}{(1+(1-t^2)/(1+t^2))}} \times \frac{2dt}{1+t^2}$	A1	
	· · · · · · · · · · · · · · · · · · ·	111	
	$=2\int_{0}^{1}\sqrt{\frac{1}{(1+t^{2})}}dt$	A1	
	$=2\ln\left[t+\sqrt{1+t^2}\right]_0$		
	$= 2 \ln [t + \sqrt{1 + t^2}]_0$	A1	Allow $sinh^{-1}(t)$
	$= 2\ln\left[1 + \sqrt{2}\right] = \ln(3 + 2\sqrt{2})$	A1	

Ques	Solution	Mark	Notes
6(a)(i)	$\frac{1}{5}$		
	Let $f(x) = (3 - \sinh x)^5$		
	$f'(x) = \frac{1}{5}(3 - \sinh x)^{-\frac{4}{5}} \times (-\cosh x)$	M1A1	
	f'(1) = -0.1907	A1	
	Since this is less than 1 in modulus, the sequence		
	is convergent.	A1	
	Let $g(x) = \sinh^{-1}(3 - x^5)$		
	$g'(x) = \frac{1}{\sqrt{1 + (3 - x^5)^2}} \times (-5x^4)$	M1A1	
	g'(1) = -2.236	A1	
	Since this is greater than 1 in modulus, the	A1	
	sequence is divergent.	AI	
(ii)	Successive approximations are		
	1.127828325	M1A1	
	1.100939212	WITAT	
	1.107049937		
	1.105684578		
	1.105990816	A1	
	(since the sequence oscillates) the value of the	A1	
	root is 1.106 correct to three decimal places.	711	
(b)			
	The Newton-Raphson iteration is		
	$x \to x - \frac{x^5 + \sinh x - 3}{5x^4 + \cosh x}$		
	$5x^4 + \cosh x$	M1A1	
	Successive approximations are		Allow any starting value
	1		Allow any starting value
	1.126056647 1.106546041	M1A1	
	1.105345041		
	1.105934755		
	1.105934754	A1	This last value must be seen for A1
	The value of the root is 1.105935 correct to six		
	decimal places.	A1	

Ques	Solution	Mark	Notes
7(a)	$I_n = -\frac{1}{2} \int_0^{\pi} x^n \mathrm{d}(\cos 2x)$	M1	
	$= -\frac{1}{2} \left[x^n \cos 2x \right]_0^{\pi} + \frac{1}{2} \int_0^{\pi} nx^{n-1} \cos 2x dx$	A1A1	
	$= -\frac{\pi^n}{2} + \frac{n}{4} \int_0^{\pi} x^{n-1} d(\sin 2x)$	M1	
	$= -\frac{\pi^n}{2} + \frac{n}{4} \left[x^{n-1} \sin 2x \right]_0^{\pi} - \frac{n(n-1)}{4} I_{n-2}$	A1A1	
(b)	$= -\frac{\pi^n}{2} - \frac{n(n-1)}{4} I_{n-2}$		
	$I_0 = \int_0^{\pi} \sin 2x dx = -\frac{1}{2} [\cos 2x]_0^{\pi} = 0$	B1	
	$I_4 = -\frac{\pi^4}{2} - 3I_2$	M1	
	$= -\frac{\pi^4}{2} - 3\left(-\frac{\pi^2}{2} - \frac{1}{2}I_0\right)$	A1	FT their I_0 for this A1
	= - 34 cao	A1	

GCE MARKING SCHEME

SUMMER 2016

Mathematics - M1 0980/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - M1

Summer 2016 Mark Scheme

Q Solution Mark Notes

1.

N2L applied man M1 R and 65g opposing. dim correct

65g - R = 65a A1

 1^{st} stage, a = 3.2R = 65(9.8 - 3.2)

 $R = \underline{429 \text{ (N)}}$ A1 cao

 $2^{\text{nd}} \text{ stage, } a = 0$ $R = 65 \times 9.8$

R = 637 (N) B1 cao

 3^{rd} stage, a = -2.4 R = 65(9.8 + 2.4)R = 793 (N) A1 cao Q Solution Mark Notes

2(a) Apply N2L to B M1 dim correct, all forces 5g and T opposing

5g - T = 5a A1

Apply N2L to A M1 dim correct, all forces T and 2g opposing

T - 2g = 2a A1

Adding

5g - 2g = 7a m1 one variable eliminated, Dep on both M's

 $a = \underline{4.2 \text{ ms}^2}$ $T = \underline{28 \text{ N}}$ A1 cao
A1 cao

- 2(b) Upwards positive
- (i) Using v = u + at, u=0. $a=(\pm)4.2, t=2$ M1 cand's a $v = 0 + 4.2 \times 2$

 $v = 8.4 \text{ (ms}^{-1})$ A1 ft a

(ii) $s=ut+0.5at^2$, $s=(\pm)18.9$, $u=(\pm)8.4$, $a=(\pm)9.8$ M1 cand's v, one sign error $-18.9 = 8.4t + 0.5 \times -9.8 \times t^2$ A1 ft v

 $7t^2 - 12t - 27 = 0$ m1 recognition of quadratic and attempt to solve

(7t+9)(t-3) = 0t = 3(s) A1 cao

3(a)
$$I = 3 \times 4$$

= 12 (Ns) B1

$$3\times4 + 11\times0 = 3v_A + 11v_B$$
 A1 correct equation $3v_A + 11v_B = 12$

$$v_B - v_A = -\frac{1}{4}(0-4)$$
 A1 correct equation, any form $v_B - v_A = 1$

$$3v_A + 11 \ v_B = 12$$
$$-3v_A + 3v_B = 3$$

Adding m1
$$14v_B = 15$$

$$v_B = \frac{15}{14} \frac{\text{(ms}^{-1})}{\text{(ms}^{-1})}$$
A1 cao

$$v_A = \frac{1}{14} \frac{\text{(ms}^{-1})}{\text{A1}} \qquad \text{A1} \quad \text{cao}$$

3(c)
$$\frac{6}{7} = e \times \frac{15}{14}$$
 M1 correct equation, any form
$$e = \frac{6}{7} \times \frac{14}{15}$$

$$e = \frac{4}{5} = \underline{0.8}$$
 A1 ft v_B if $> \frac{6}{7}$

Note: Accept g throughout conservation of momentum equation, whether crossed off or not.

Q Solution

Mark

Notes

4(a)

- B1 (0, 30) to (300, 30)
- B1 (300, 30) to (320, 16)
- B1 (320, 16) to (328,0)
- B1 shape, units, labels

4(b) Total distance = area under graph

 $D = 300 \times 30 + 0.5 \times (30 + 16) \times 20 + 0.5 \times 16 \times 8$ B1

attempted

B1 one correct area, ft graph

A1 all correct, ft graph if

shape correct.

$$D = 9000 + 460 + 64$$

$$D = 9524 \, (m)$$

A1 cao

M1

Q Solution Mark Notes

5 Resolve in one direction M1 obtain comp of resultant

 $X = 8\cos 30^{\circ} + 7\cos 45^{\circ}$ - $15\cos 60^{\circ} - 12\cos 50^{\circ}$ A1

 $-15\cos 60^{\circ} - 12\cos 50^{\circ}$ A X = -3.3355

Resolve in perpendicular direction M1 obtain comp of resultant

 $Y = 8\cos 60^{\circ} - 7\cos 45^{\circ}$

 $-15\cos 30^{\circ} + 12\cos 40^{\circ}$ A1 Y = -4.7476

Resultant² = $3.3355^2 + 4.7476^2$ m1 dep on both M's

Resultant = 5.8N A1 cao

Acceleration = $\frac{5.8021777}{4}$

Acceleration = 1.45 (ms^{-2}) A1 ft Resultant. Accept 1.5.

Q Solution

Mark

Notes

6.

Take moments about C M1 dim correct moment equ. $8g \times 1.4 = T_D \times 3.2$ B1 Any correct moment A1 correct equation

 $T_D = 3.5g(N) = 34.3(N)$ A1 cao

Resolve vertically M1 oe

 $T_C + T_D = 8g = 78.4$ A1

 $T_C = 4.5g(N) = 44.1(N)$ A1 cao

Note:

Simultaneous equations

First moment equation M1 B1 A1

Second moment equation or resolution equation M1 A1 (B1 if not previously awarded)

Answers A1 A1

Equal tension

Moments about C/D 4 marks available

Moments about anywhere else 2 marks available.

Solution Q

Mark

Notes

7

7(a) Resolve perpendicular to plane M1dim correct equation

All forces

No more than 1 sign error

$$R + 80 \sin 10^{\circ} = 12g \cos 20^{\circ}$$

R = 96.616

A1

M1

ft *R* (any correct form)

$$F = \mu R = 0.2 \times 96.616$$

 $F = 19.323 (N)$

A1 cao

7(b) Resolve parallel to plane

M1dim correct equation

All forces

Allow sin/cos errors Friction subtracted from

tension

$$80 \cos 10^{\circ} - F - 12g \sin 20^{\circ} = 12a$$

 $a = 1.6 \text{ (ms}^{-2})$

A2

-1 each error, (ft F) **A**1 cao

Note (for both parts)

If no g with 12, M0 (possibly M1 for μR)

If 80 not resolved M0If g with 80 M0

Q Solution Mark Notes Use of $s = ut + 0.5at^2$ with s=460, t=208 M1 $460 = 20u + 0.5 \times a \times 400$ **A**1 u + 10a = 23Use of v = u + at with t=6, v=17M117 = u + 6a**A**1 u + 6a = 17attempt to solve simultaneously one variable remains m14a = 6a = 1.5**A**1 cao u = 8**A**1 cao

Note:

3 or more equations
First correct equation
All subsequent equations, eg 2 if 3 unknowns, 3 if 4 unknowns
All variables except one eliminated
Correct answers

M1 A1
m1
A1 A1

Q	Solution				Mark	Notes
9.	ABC Circle D Lamina	Area 54 4π 12π $(54+8\pi)$	AC 4 4 6 x	AB 3 4.5 y	B1 B1 B1 B1	expressions for areas, oe
	Moments abou	ut AC			M1	consistent areas and
	$54\times4 + 12\pi\times6$	$= (54+8\pi)x +$	4π×4		A1	moments signs correct. Ft table if at least one B1 for c of m gained.
	x = 4.95 (cm)				A1	cao
	Moments about AB					consistent areas and moments
	$54 \times 3 + 12\pi \times 4.5 = (54 + 8\pi)y + 4\pi \times 3$					signs correct. Ft table if at least one B1 for c of m gained.
	y = 3.71 (cm)				A1	cao
Altern	ative solution					
	ABC-Circle D Lamina	Area $54-4\pi$ 12π $(54+8\pi)$	AC 4 6 x	AB 3 4.5 y	B1 B1 B1 B1	expressions for areas, oe
	Moments abou	ut AC			M1	consistent areas and
	$(54-4\pi)\times 4 + 12\pi\times 6 = (54+8\pi)x$ x = 4.95 (cm)				A1	moments signs correct. Ft table if at least one B1 for c of m
					A1	gained. cao
	Moments about AB					consistent areas and moments
	$(54-4\pi)\times 3 + 1$	$2\pi \times 4.5 = (54 + 6)$	8π)y		A1	signs correct. Ft table if at least one B1 for c of m
	y = 3.71 (cm)				A1	gained. cao

GCE MARKING SCHEME

SUMMER 2016

Mathematics - M2 0981/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - M2

Summer 2016 Mark Scheme

Q	Solution	Mark	Notes
1(a).	$x = \int 12t^2 - 7kt + 1dt$	M1	At least one power increased
	$x = 4t^3 - \frac{7k}{2}t^2 + t + (C)$	A1	correct integration
	t = 0, x = 3 $C = 3$	m1	use of initial conditions
	$x = 4t^3 - \frac{7k}{2}t^2 + t + 3$		
	t = 2, x = 16 $16 = 32 - 14k + 2 + 3$	m1	values substituted
	$k = \frac{3}{2}$	A1	cao
1(b).	$a = \frac{\mathrm{d}v}{\mathrm{d}t}$	M1	At least one power
	a = 24t - 10.5	A1	decreased correct differentiation ft <i>k</i> . accept <i>k</i>
	F = 4(24t - 10.5) When $t = 5$	m1	4xa
	$F = 4(24 \times 5 - 10.5)$ F = 438 (N)	A1	ft k. –ve values A0

Q Solution Mark Notes

2(a)
$$u_{\rm H} = 24.5\cos 30^{\circ} = (12.25\sqrt{3})$$
 B1
 $u_{\rm V} = 24.5\sin 30^{\circ} = (12.25)$ B1

$$s = ut + 0.5at^2$$
, $s=0$, $u=12.25$, $a=(\pm)9.8$ M1 oe complete method $0 = 12.25t - 0.5 \times 9.8 \times t^2$ A1 $t = \frac{12 \cdot 25}{4 \cdot 9}$ A1

Range =
$$2.5 \times 12.25\sqrt{3}$$

Range = 53.04 (m) A1 cao

2(b)
$$v^2 = u^2 + 2as$$
, $v=0$, $u=12.25$, $a=(\pm)9.8$ M1 oe complete method $0 = 12.25^2 - 2 \times 9.8 \times s$ A1 ft u_V answers rounding to 7.7 ISW

Q Solution

Mark Notes

 $3 \mathbf{r} = \mathbf{p} + t\mathbf{v}$

 $\mathbf{r}_A = (1 + 2t)\mathbf{i} + 5t\mathbf{j} - 4t\mathbf{k}$ $\mathbf{r}_B = (3 + t)\mathbf{i} + 3t\mathbf{j} - 5t\mathbf{k}$ M1 used

A1 either correct, any form

at least 1 power reduced

 $\mathbf{r}_B - \mathbf{r}_A = (2 - t)\mathbf{i} - 2t\mathbf{j} - t\mathbf{k}$

M1

 $AB^{2} = x^{2} + y^{2} + z^{2}$ $AB^{2} = (2 - t)^{2} + 4t^{2} + t^{2}$ $(AB^{2} = 6t^{2} - 4t + 4)$

M1 A1

M1

cao

Differentiate

 $\frac{dAB^2}{dt} = 2(2 - t)(-1) + 10t \ (= 12t - 4)$

dt -4 + 2t + 10t = 0

m1 equating to 0.

 $t = \frac{1}{3}$

A1 cao

(least distance)² = $(2 - \frac{1}{3})^2 + 5(\frac{1}{3})^2$

least distance = $\sqrt{\frac{10}{3}}$ = $\underline{1.83 \text{ (m)}}$

A1 cao

Q Solution Mark Notes

4(a) Conservation of momentum M1 dimensionally correct
$$12 \times 600 = 1600 \times v$$
 A1 $v = \frac{9}{2} \text{ (ms}^{-1}\text{)}$ A1 allow -ve

4(b) Energy considerations
$$E = 0.5 \times 12 \times 600^2 + 0.5 \times 1600 \times 4.5^2$$
 A1 both expressions correct, Ft v in (a)
$$E = 2160000 + 16200$$

$$E = 2176200 \text{ (J)}$$
 A1 cao Energy dissipated by eg sound of cannon firing ignored. E1 oe

4(c) Work-energy principle M1 used
$$F \times d = E$$
 $F \times 1.2 = 16200$ A1 cao

Q Solution Mark Notes

5. Hooke's Law

$$30 = \frac{\lambda(0.95 - l)}{l}$$

$$70 = \frac{\lambda(1.15 - l)}{l}$$

$$70 = \frac{\lambda (1 \cdot 15 - l)}{l}$$

$$\frac{70}{30} = \frac{(1.15 - l)}{(0.95 - l)}$$

$$7(0.95 - l) = 3(1.15 - l)$$

$$l = \underline{0.8}$$
$$\lambda = \underline{160}$$

M1used

A1

A1

m1getting to equation

with 1 variable

A1 cao

A1 cao Q Solution

Mark Notes

A₁

M1

m1

 $6(a) \quad \mathbf{a} = \frac{\mathrm{d}v}{\mathrm{dt}}$

 $\mathbf{a} = 14\cos 2t \,\mathbf{i} - 18\sin 3t \,\mathbf{j}$

M1 sin to cos and coefficient

sin to cos and coefficient

multiplied

divided.

 $6(b) \quad \mathbf{r} = \int 7\sin 2t \, \mathbf{i} + 6\cos 3t \, \mathbf{j} \, dt$

 $\mathbf{r} = -3.5\cos 2t \,\mathbf{i} + 2\sin 3t \,\mathbf{j} + (\mathbf{c})$

 $2\sin 3t \,\mathbf{j} + (\mathbf{c}) \tag{A1}$

t = 0, $\mathbf{r} = 0.5 \,\mathbf{i} + 3 \,\mathbf{j}$ $0.5 \,\mathbf{i} + 3 \,\mathbf{j} = -3.5 \,\mathbf{i} + \mathbf{c}$ $\mathbf{c} = 4 \,\mathbf{i} + 3 \,\mathbf{j}$

m1 used

When $t = \frac{\pi}{2}$

 $\mathbf{r} = -3.5\cos\pi\,\mathbf{i} + 2\sin\frac{3}{2}\,\pi\,\mathbf{j} + 4\,\mathbf{i} + 3\,\mathbf{j}$

 $\mathbf{r} = (4 + 3.5) \mathbf{i} + (3 - 2) \mathbf{j}$ $\mathbf{r} = 7.5 \mathbf{i} + \mathbf{j} (m)$

A1 cao

OR

 $\int_{0}^{\pi/2} 7\sin 2t \, \mathbf{i} + 6\cos 3t \, \mathbf{j} \, \mathrm{d}t$

 $= \left[-3.5\cos 2t \,\mathbf{i} + 2\sin 3t \,\mathbf{j}\right]^{\pi/2}$

= 3.5 i - 2 j + 3.5 i

 $\mathbf{r} = 0.5 \,\mathbf{i} + 3 \,\mathbf{j} + 3.5 \,\mathbf{i} - 2 \,\mathbf{j} + 3.5 \,\mathbf{i}$

 $\mathbf{r} = 7.5 \,\mathbf{i} + \mathbf{j} \,(\mathbf{m})$

(M1) attempt to integrate

substituted si

(A1) correct integration

(m1) correct use of limits $0,\pi/2$

(m1) adding $0.5 \mathbf{i} + 3 \mathbf{j}$

(A1) cao

Q	Solution	Mark	Notes
7.	K. Energy. at $A = 0.5 \times 70 \times v^2$ K. Energy. at $A = 35v^2$	B1	
	Let potential energy be 0 at <i>A</i> P. Energy at $B = 70 \times 9.8 \times (22-20)$ P. Energy at $B = 70 \times 9.8 \times 2$ P. Energy at $B = 1372$	M1 A1	mgh attempted correct for h=2, 20, 22
	Minimum K. Energy at $B = 0$		
	WD against resistance = 50×16 WD against resistance = 800	B1	
	Work-Energy Principle $35v^2 = 1372 + 800$ v = 7.88	M1 A1 A1	at least 3 energies ft one arithmetic slip cao

Q

Solution

Mark Notes

8

Resolve vertically R = mg

$$F = \mu R = 0.72mg$$

B1

B1 ft R, si

If particle remains at A

$$F \geq ma$$

M1 accept =, used, No extra force

 $0.72mg \ge \frac{mv^2}{1 \cdot 6}$

$$v^2 \le 0.72 \times 9.8 \times 1.6$$

$$v \le 3.36$$

A1 cao, accept =

Greatest value of v is 3.36

$$\omega \leq \frac{3 \cdot 36}{1 \cdot 6}$$

$$\omega \leq 2.1 \text{ rads}^{-1}$$

Greatest value of ω is 2.1 rads⁻¹

A1B1 accept =, ft v

Q Solution Mark Notes

9(a) Conservation of energy

$$0.5 \times m \times g + mg \times 4(1 - \cos \theta)$$
$$= 0.5 \times m \times v^{2}$$

M1KE and PE

A1 KE both sides, oe **A**1

$$g + 8g(1 - \cos \theta) = v^2$$

$$v^2 = g(9 - 8\cos \theta)$$

correct equation, any form

cao, simplified, ISW

9(b) N2L towards centre of motion M1dim correct, 3 terms, $mg\cos\theta$ and R opposing

$$mg\cos\theta - R = \frac{mv^2}{4}$$

A1

$$R = mg\cos\theta - \frac{mg}{4}(9 - 8\cos\theta)$$

 $R = 3mg(\cos\theta - 0.75)$

M1

m1

P leaves the surface when
$$R=0$$
 $\cos\theta = 0.75$

A1 cao

$$v^2 = g(9 - 8 \times 0.75)$$

 $v^2 = 3g = 29.4$

A1 cao

0981/01 GCE Mathematics M2 MS Summer 2016/LG

GCE MARKING SCHEME

SUMMER 2016

Mathematics - M3 0982/01

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCE Mathematics - M3

Summer 2016 Mark Scheme

Q	Solution	Mark	Notes
1(a)	N2L applied to particle 1800 - 120v = 60a Divide by 60 and $a = \frac{dv}{dt}$	M1	dim correct equation
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 30 - 2v$	A1	convincing
1(b)	$\int \frac{dv}{30 - 2v} = \int dt$	M1	correct sep. of variables
	$-\frac{1}{2}\ln 30 - 2v = t (+C)$	A1A1	A1 for $\ln 30-2v $
	2		A2 all correct, any form.
	When $t = 0$, $v = 8$ $C = -\frac{1}{2} \ln 4$ $t = \frac{1}{2} \ln \left \frac{14}{30 - 2v} \right $	m1	initial conditions used
	$e^{2t} = \frac{14}{30 - 2v}$	m1	correct inversion at any stage ft similar expression
	$30 - 2v = 14e^{-2t}$ $v = 15 - 7e^{-2t}$	A1	any correct simplified expression
	Limiting value of $v = \underline{15}$	B1	cao. Allow if e ^{-kt} , k>0.

Notes

2(a).
$$x = A\sin\omega t + B\cos\omega t$$
.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v = A\omega\cos\omega t - B\omega\sin\omega t.$$
 B1

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -A\omega^2 \sin\omega t - B\omega^2 \cos\omega t \qquad M1$$

Hence,

$$\frac{d^2x}{dt^2} = -\omega^2 x$$
 A1 convincing

Therefore motion is SHM

Value of
$$x$$
 at centre of motion = 0 B1

Amplitude
$$a =$$
value of x when $v = 0$

$$A\omega\cos\omega t - B\omega\sin\omega t = 0$$
 M1

$$\tan \omega t = \frac{A}{B}$$

$$\sin \omega t = \frac{A}{\sqrt{A^2 + B^2}} \cos \omega t = \frac{B}{\sqrt{A^2 + B^2}}$$
 m1 either expression

$$a = A \frac{A}{\sqrt{A^2 + B^2}} + B \frac{B}{\sqrt{A^2 + B^2}}$$

$$a = \sqrt{A^2 + B^2}$$
 A1 cao

2(b)(i) using
$$v^2 = \omega^2(a^2 - x^2)$$
 M1

$$25 = \omega^{2}(a^{2} - 25)$$

$$169 = \omega^{2}(a^{2} - 9)$$

$$169 = \omega^2(a^2 - 9)$$
 A1 either equation correct

Subtract

$$144 = 16\omega^2 \qquad \qquad m1 \qquad oe$$

$$\omega = 3$$

Amplitude =
$$a$$

Amplitude =
$$a$$

25 = $3^2(a^2 - 25)$ m1 substitution

Period =
$$\frac{2\pi}{\omega} = \frac{2\pi}{3}$$
 A1 cao

$$a^2 = \frac{250}{9}$$
, $a = \frac{5\sqrt{10}}{3} = 5.27$ (m) A1 cao

$$2(b)(ii)x = \frac{5\sqrt{10}}{3}\sin(3t)$$
 M1 accept sin/cos, a, \omega

$$x = \frac{5\sqrt{10}}{3} \sin(3 \times 0.3)$$
 A1 ft derived a, \omega

$$x = 4.128 \, (\text{m})$$
 A1 cao

Q Solution Mark Notes

Alternative solution

$$2(a)$$
. $x = A\sin\omega t + B\cos\omega t$.

$$x = R\sin(\omega t + \varepsilon)$$
 M1

 $A\sin\omega t + B\cos\omega t$

=
$$R\sin\omega t \cos\varepsilon + R\cos\omega t \sin\varepsilon$$
 m1 si

 $R\cos\varepsilon = A$

 $R sin \varepsilon = B$

$$R = \sqrt{A^2 + B_2^2}$$
 A1

$$R = \sqrt{A^2 + B^2}$$

$$\varepsilon = \tan^{-1} \left(\frac{B}{A}\right)$$
A1

$$x = \sqrt{A^2 + B^2} \sin(\omega t + \tan^{-1} \left(\frac{B}{A}\right))$$

Therefore motion is SHM **A**1

Value of x at centre of motion = 0 **B**1

Amplitude = $\sqrt{A^2 + B^2}$ **A**1 Q

Solution

Mark

Notes

3 Auxiliary equation

$$m^2 + 6m + 9 = 0$$

 $(m + 3)^2 = 0$

M1

m = -3 (twice)

A1

CF is $x = (A + Bt)e^{-3t}$

ft values of m B1

For PI, try x = at + b

M1

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a$$

$$\frac{d}{dt} = 0$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 0$$

A1

6a + 9(at + b) = 27tComparing coefficients

m1

$$9a = 27$$

$$a = 3$$

$$18 + 9b = 0$$

b = -2General solution is

$$x = (A + Bt)e^{-3t} + 3t - 2$$

A1 both values

When
$$t = 0$$
, $x = 0$

$$0 - A - 3$$

$$0 = A - 2$$
$$A = 2$$

m1used

A1 cao

$$\frac{dx}{dt} = -3(A + Bt) e^{-3t} + Be^{-3t} + 3$$

B1 ft similar expressions

When
$$t = 0$$
, $\frac{\mathrm{d}x}{\mathrm{d}t} = 0$,

$$0 = -3A + B + 3$$

$$B = 3$$

A1 ft similar expressions

$$x = (2 + 3t)e^{-3t} + 3t - 2$$

When
$$t-2$$

When
$$t = 2$$

 $x = 8e^{-6} + 4$

$$x = 4.(02) (4.01983)$$

A1 cao Q

Solution

Mark

Notes

4(a). Use of N2L
$$8g - 0.4v^2 = 8a$$

 $196 - v^2 = 20v \frac{dv}{dx}$

M1

A1 use of
$$a = v \frac{dv}{dx}$$
, convincing

4(b)
$$\int dx = \int \frac{20v dv}{196 - v^2}$$
$$x (+C) = 20 \times -\frac{1}{2} \ln |196 - v^2|$$

M1 correct sep variables

$$x (+C) = -10 \ln |196 - v^2|$$

A1A1 A1 for $\ln |196 - v^2|$,

When
$$x = 0$$
, $v = 0$
 $C = -10\ln 196$
 $x = 10\ln \left| \frac{196}{196 - v^2} \right|$

m1

When
$$v = 10$$

 $x = 10 \ln \frac{196}{96} = \underline{7.14 \text{ (m)}}$

A1 cao

4(c)
$$196 - v^{2} = 20 \frac{dv}{dt}$$

$$\int dt = \int \frac{20 dv}{14^{2} - v^{2}}$$

$$t = \frac{20}{2 \times 14} \ln \left| \frac{14 + v}{14 - v} \right| + (C)$$

M1 correct sep variables

A1A1 A1 for
$$\ln \left| \frac{14 + v}{14 - v} \right|$$
,
A1 all correct

When
$$t = 0$$
, $v = 0$
C = 0

m1 used A1

$$t = \frac{5}{7} \ln \left| \frac{14 + v}{14 - v} \right|$$

$$e^{1.4t} = \frac{14 + v}{14 - v}$$

$$v = 14 \left(\frac{e^{1.4t} - 1}{e^{1.4t} + 1} \right)$$

m1 inversion

A1 cao any correct expres.

When
$$t = 2$$

 $v = 12.39$

A1 cao

Q	Solution	Mark	Notes
5	Speed of A just before string becomes taut is given by $v^2 = u^2 + 2as$, $a = (\pm)9.8$, $s = (1.8-0.2)$ $v^2 = 0 + 2 \times 9.8 \times 1.6$ $v = 5.6 \text{ (ms}^{-1})$	M1 A1	
	Impulse = change in momentum Apply to A $J = 2 \times 5.6 - 2v$ Apply to B	M1 A1	used ft answer in (a)
	J = 5v	B1	
	Solving simultaneously $2 \times 5.6 - 2v = 5v$ 7v = 11.2	m1	
	Speed of $B = 1.6 \text{ (ms}^{-1})$	A1	cao

J = 5v = 8 (Ns)

ft speed of B

A1

Q

Solution

Mark

Notes

6(a)

A2 -1 each error

Resolve vertically 6(b)

equation, no missing, M1no extra force. sin/cos

 $S\cos 60^{\circ} + R = 25g$

A1

Resolve horizontally

M1equation, no missing no extra force. sin/cos

 $F = S \sin 60^{\circ}$

A1

$$F = 0.3R$$

B1 used

$$0.3R = S\sin 60^{\circ}$$

$$R = \frac{\sqrt{3}}{2 \times 0.3} S$$

$$0.5S + R = 25g$$

$$0.5S + \frac{\sqrt{3}}{2 \times 0.3}S = 25 \times 9.8$$

eliminating one variable m1

Depends on both M's

$$S = \frac{72.34 \text{ (N)}}{200.022 \text{ (N)}}$$

A1 cao

R = 208.83 (N)

A1 cao

6(c) Moments about A M1 equation, no missing, no extra force. dim

correct

$$Sx = 25g \times 5\cos 60^{\circ}$$

A1 LHS correct

$$x = \frac{25 \times 9 \cdot 8 \times 5 \times \cos 60^{\circ}}{72 \cdot 340711}$$

A1

$$x = 8.46(69)$$

A1 cao

GCE MARKING SCHEME

SUMMER 2016

Mathematics – S1 0983/01

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCE Mathematics - S1 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes	
1(a)	$P(A \cup B) = P(A) + P(B)$	M1	Award M1 for the use of the	
(b)	= 0.7	A1 formulae in all three parts		
(8)	$P(A \cap B) = 0.12$	B1		
		M1		
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= 0.58$	A1		
	= 0.38	711		
(c)	$P(A \cap B) = P(A \mid B)P(B)$	M1		
	= 0.1	A1		
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	m1		
	= 0.6	A1		
	= 0.0			
2(a)	$P(red) = 0.45 \times 0.03 + 0.55 \times 0.05$	M1A1		
	= 0.041	A1		
(b)	0.55×0.05	D1D1	D1 D1 1	
	$P(\text{female} \text{red}) = \frac{0.55 \times 0.05}{0.041}$	B1B1	B1 num, B1 denom	
	= 0.671 cao $(55/82)$	B1	FT denominator from (a)	
3(a)	E(Y) = 2a + b = 8	M1A1		
S(a)	$Var(Y) = 2a^2 = 8$	M1A1	Award SC2 for correct answer	
	a = 2; b = 4	A1A1		
(b)	· · · · · · · · · · · · · · · · · · ·	11111	unsupported	
(b)	Any statement which mentions that certain	D1		
	values, eg 0 , cannot be taken by Y .	B1		
4(a)(i)	(4)			
	4 2 2 3	3.74		
	P(no Welsh) = $\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$ or $\frac{3}{8}$	M1		
	8 7 6 (8)			
	(3)			
	1 (0.074)	A 1		
	$=\frac{1}{14}(0.071)$	A1		
	11			
	P(1 of each) = $\frac{4}{8} \times \frac{2}{7} \times \frac{2}{6} \times 6$ or $\frac{\binom{4}{1} \times \binom{2}{1} \times \binom{2}{1}}{\binom{8}{2}}$			
	$P(1 \text{ of each}) = \frac{4}{2} \times \frac{2}{2} \times 6 \text{ or } \frac{(1)}{(1)} \times \frac{(1)}{(1)}$			
(ii)	$\begin{array}{c} 1 & \text{(1.6) Cach)} = 8 & 7 & 6 & \text{(8)} \end{array}$	M1A1	M1A0 if 6 omitted	
	$\left(\begin{array}{c}3\end{array}\right)$		111110 11 0 01111100	
	2			
	$=\frac{2}{7}$ (0.286)	A 1		
	7	A1		
	(7)			
(b)	P(Jack selected) = $\frac{1}{8} + \frac{7}{8} \times \frac{1}{7} + \frac{7}{8} \times \frac{6}{7} \times \frac{1}{6}$ or $\frac{2}{8}$	M1		
	$P(\text{Jack selected}) = \frac{-+-\times-+-\times-\times-\times-\text{or}}{2} \times \frac{1}{2} \times \frac{1}{$			
	(3)			
	$=\frac{3}{8}(0.375)$	A1	Accept answer with no working	
	$-\frac{-8}{8}$ (0.373)			

(ii) $P(X = 5) = \frac{5}{5!}$ $= 0.161$ $P(X > 3) = 1 - e^{-6} \left(1 + 6 + \frac{36}{2} + \frac{216}{6} \right)$ M1 if tables M1 M1 Award 1	M0 if no working seen or s used M1A0A0 if one of the ms is missing
(ii) $P(X = 5) = \frac{5}{5!}$ $= 0.161$ $P(X > 3) = 1 - e^{-6} \left(1 + 6 + \frac{36}{2} + \frac{216}{6} \right)$ M1 if tables M1 Award I four term	s used M1A0A0 if one of the
(ii) $ = 0.161 $ $P(X > 3) = 1 - e^{-6} \left(1 + 6 + \frac{36}{2} + \frac{216}{6} \right) $ M1A1 Award I four term	M1A0A0 if one of the
(ii) $P(X > 3) = 1 - e^{-6} \left(1 + 6 + \frac{36}{2} + \frac{216}{6} \right)$ M1A1 Award I four term	
i i i i i i i i i i i i i i i i i i i	
i i i i i i i i i i i i i i i i i i i	ms is missing
(b) I calcing at the appropriate section of the table	
Looking at the appropriate section of the table, Mean = 2.4 M1A1 Award 1	M1 for evidence of
WIAI TWAIG	e use of table
$t = \frac{12}{0.2} = 12$ A1 Accept	12 with no working
6(a)(i)	
	the first M1 in (iii) if not
= 0.752 A1 awarde	d in (i) for adding the six
(ii) $P(X=2) = 28 \times 0.88^6 \times 0.12^2$	probabilities
(iii) $P(X > 2) = 1 - 0.752 - 0.187$	
F1 from	n two other calculated
probabi	iities
	11A0 if -5 omitted
	om (a)
Allow 0 0.752 ×	$0.187 \times 5 + 0.061 \times 20 -$
7(a)(i) $0.3 + 0.2 + 0.1 + a + b = 1$ B1	. J
a+b=0.4	
(ii) $E(X) = 0.3 \times 1 + 0.2 \times 2 + 0.1 \times 3 + 4a + 5b = 2.85$ M1	•
(ii) $E(X) = 0.3 \times 1 + 0.2 \times 2 + 0.1 \times 3 + 4a + 5b = 2.85$ M1 4a + 5b = 1.85 A1	
Solving, m1	
a = 0.15, b = 0.25 A1	
(b) The possible pairs are (1,1), (1,2), (1,3),(2,2) B1	
	d M1A0A0 if one of the
= 0.31 A1 terms	is missing or if $(1,1)$ or
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(2) is double counted ISC1 for Prob < 4 (0.21)
Award	or Prob = $4(0.21)$

Ques	Solution	Mark	Notes
8(a)	np = 3 giving $p = 0.06$	M1A1	
(b)	$P(X=2) = {50 \choose 2} \times 0.06^2 \times 0.94^{48}$	M1	
(c)	= 0.2262 Using the Poisson table,	A1	
	P(X = 2) = 0.4232 - 0.1991 or 0.8009 - 0.5768 = 0.2241	M1	Award M0A0 for 0.2240 from
		A1	formula
	Percentage error = $\frac{0.0021}{0.2241} \times 100 < 1\%$	B1	Allow 0.2240 for this B1
9(a)(i)	$F(x) = k \int_{1}^{x} (2u - 1) \mathrm{d}u$	M1	M1 for the integral of $f(x)$
	$=k\left[u^2-u\right]^x$	A1	limits may be left until 2 nd line.
(ii)	=kx(x-1)	A1	
(11)	F(2) = 1	M1	Allow integration of $f(x)$ from 1
	$2k = 1$ $k = \frac{1}{2}$	A1	to 2.
(b)(i)	2		
	$E(X) = \int_{1}^{2} \frac{1}{2} x(2x-1) dx$	M1	M1 for the integral of $xf(x)$,
	$=\frac{1}{2}\left[\frac{2x^3}{3}-\frac{x^2}{2}\right]^2$	A1	limits may be left until 2 nd line.
(ii)	$=1.58(19/12)^{-1}$	A1	
	The median m satisfies $m(m-1) = 1$		Accept a geometrical argument
	$F(m) = \frac{m(m-1)}{2} = \frac{1}{2}$	M1	FT $F(m)$ from (a) if it gives a
	$m^2 - m - 1 = 0$	A1	quadratic equation and an answer in [1,2]
	$m = \frac{1 \pm \sqrt{1+4}}{2}$	M1	Condone the absence of ±
	m = 1.62	A1	
(iii)	P(X > 1.5) = 1 - F(1.5) = 0.625	M1 A1	FT F from (a) if possible

0983/01 GCE Mathematics S1 MS Summer 2016/LG

GCE MARKING SCHEME

SUMMER 2016

Mathematics - S2 0984/01

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCE Mathematics - S2 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes
1(a)	E(W) = 6	B1	
	$E(X^2) = \text{Var}(X) + [E(X)]^2 = 6$	M1A1	
	$E(Y^2) = \text{Var}(Y) + [E(Y)]^2 = 12$	A1	
	$Var(W) = E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$ = 36	M1A1	
(I-)	The possibilities are $(1,4)$; $(2,2)$; $(4,1)$ si	B 1	Arroad the M1 for moultiplying
(b)	$Pr = 2e^{-2} \times \frac{3^4}{4!}e^{-3} + \frac{2^2}{2!}e^{-2} \times \frac{3^2}{2!}e^{-3} + \frac{2^4}{4!}e^{-2} \times 3e^{-3}$	M1A1	Award the M1 for multiplying and adding Poisson
	= 0.12	A1	probabilities. Accept use of tables
2(a)			tuoies
	$\bar{x} = \frac{637.2}{10} = 63.7(2)$	B1	M0 no working
	SE of $\bar{x} = \frac{1.9}{\sqrt{10}}$ (0.6008)	M1A1	
	95% confidence interval limits are $63.7(2) \pm 1.96 \times 0.6008$	M1A1	
	giving [62.5,64.9]	A1	
(b)	Width of 95% CI = $2 \times 1.96 \times \frac{1.9}{\sqrt{n}} = 1$	M1A1	FT their z from (a)
	n = 55.47 Minimum $n = 56$ cao	A1 A1	
3(a)	Upper quartile = $40 + 0.674(5) \times 2.5$	M1	M0 no working
(b)(i)	= 41.7	A1	
(b)(i)	Let X =weight of a male, Y =weight of a female Let $U = X_1 + X_2 + X_3 + Y_1 + Y_2$		
	$E(U) = 3 \times 40 + 2 \times 32 = 184$	B1	
	$Var(U) = 3 \times 2.5^2 + 2 \times 1.5^2 = 23.25$	B1	
	$z = \frac{185 - 184}{\sqrt{23.25}} = 0.21$	M1A1	
	Prob = 0.4168	A1	Accept 0.417
(ii)	Let $W = X_1 + X_2 + X_3 - 2(Y_1 + Y_2)$	M1	
	$E(W) = 3 \times 40 - 4 \times 32 = -8$	A1	
	$Var(W) = 3 \times 2.5^2 + 8 \times 1.5^2 = 36.75$	M1A1	
	$z = \frac{8}{\sqrt{36.75}} = 1.32$	m1A1	
	$\sqrt{36.75}$ Prob = 0.9066	A1	Accept 0.907
	1100 – 0.7000		1 кесері 0.901

Ques	Solution	Mark	Notes
4(a)	Under H_0 , $E(\overline{X} - \overline{Y}) = 0$	B1	
	$Var(\overline{X} - \overline{Y}) = \frac{1.5^2}{8} + \frac{2.5^2}{12} (= 0.802) (77/96)$ He is accepted if	B1	
	H ₁ is accepted if $\frac{\left \overline{X} - \overline{Y}\right }{\sqrt{0.802}} > 1.645$	M1A1	
	$\left \overline{X} - \overline{Y} \right > 1.473$ So $k = 1.473$	A1	Accept 1.47
(b)(i)			
	Now, $E(\overline{X} - \overline{Y}) = 0.5$ si	B1	FT k and variance
	$ H_0 $ is accepted if $ \overline{X} - \overline{Y} \le 1.473$, ie	M1	
	$-1.473 \le \overline{X} - \overline{Y} \le 1.473$	A1	
	$z_1 = \frac{1.473 - 0.5}{\sqrt{0.802}} = 1.09$	M1A1	Accept 1.08
	$z_2 = \frac{-1.473 - 0.5}{\sqrt{0.802}} = -2.20$	A1	
	Required probability = $0.8621 - 0.0139$	m1	Accept 0.8599 – 0.0139
(ii)	= 0.848	A1	Accept 0.846
(11)	An appropriate comment, eg The test is unlikely to detect small differences.	B1	FT probabilities greater than 0.5
	This is a very high error probability.		
5(a)(i)	$H_0: p = 0.7; H_1: p < 0.7$	B1	
(ii)			
(11)	Let X denote number of seeds which germinate. Under H_0 , X is $B(50,0.7)$ si	B1	
	p -value = $P(X \le 32)$	B1	
	Let Y denote number of non-germinating seeds.		
	Under H_0 , <i>Y</i> is $B(50,0.3)$ si	B1	
	p -value = $P(Y \ge 18)$	M1	
	= 0.2178	A1	
	Insufficient evidence to reject the seed	F-1	
	manufacturer's claim.	B1	FT the p -value if > 0.05
(b)	Under H_0 , X is now B(500,0.7) \approx N(350,105) si	B1B1	B1 mean, B1 variance
	Test statistic = $\frac{329.5 - 350}{\sqrt{105}}$	M1A1	Award M1A0 for incorrect or no
	= -2.00		continuity correction but FT for
	p-value = 0.0227 or 0.0228	A1	following marks
	p value of old 227 of old 220	A1	No cc, $z = -2.05$, $p = 0.0202$ Wrong cc, $z = -2.10$, $p = 0.0179$
			2.10, p 0.017
	Strong evidence to conclude that the germination rate is less than 0.7	B1	FT the p -value if < 0.05

Ques	Solution	Mark	Notes
6(a)	$P(Y \le 8) = P(X \ge 12)$	M1	Award the M1 for stating that <i>Y</i>
	= 0.8	A1	is uniform on [0,10]
(b)(i)	Y = 20 - X	B1	
(ii)	P(XY > 64) = P[X(20 - X) > 64]	M1	
	$= P(X^2 - 20X + 64 < 0)$	A1	
	The critical values are 4 and 16	A1	
	OR $P[(X-4)(X-16)] < 0$		
	The required region is $X < 16$	A1	
(c)	Prob = 0.6	A1	
	EITHER Prob density of X is $f(x) = 0.1$ (10 < x < 20) si $E(XY) = \int_{10}^{20} (20x - x^2) \times \frac{1}{10} dx$ $= \frac{1}{10} \left[10x^2 - \frac{x^3}{3} \right]_{10}^{20}$ $= 66.7 (200/3)$ OR	B1 M1A1 A1 A1	Limits may be left until the next line
	$E(XY) = 20E(X) - E(X^2)$	(M1)	
	E(X) = 15	(B1)	
	$E(X^2) = \operatorname{Var}(X) + [E(X)]^2$	(M1)	
	=100/12+225 (700/3)	(A1)	
	E(XY) = 66.7 (200/3)	(A1)	

GCE MARKING SCHEME

SUMMER 2016

Mathematics - S3 0985/01

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

GCE Mathematics - S3 Summer 2016 Mark Scheme

Ques		Solution	<u> </u>	Mark	Notes
1	The sample spa are as follows.		oonding probabilities		
	Sample 2,2,2	Max 2	Prob 1/20	В3	B3 for correct samples and max B3 for correct probabilities
	2,2,10 2,2,50 2,10,10 2,10,50 10,10,50	10 50 10 50 50	6/20 3/20 3/20 6/20 1/20	В3	– 1 each error or omission
	$E(M) = 2 \times \frac{1}{2}$ $= 29.$	$\frac{1}{20} + 10 \times \frac{9}{20} + 3$ 6 (p)	$50 \times \frac{10}{20}$	M1 A1	
2(a)	$H_0: \mu = 6$	$61; H_1: \mu < 61$		B1	
(b)	$\sum x = 603.$ UE of μ	$4 \text{ si; } \sum x^2 = 1$ $= 60.34$	36419.5	B1B1 B1	No working need be seen
	UE of $\sigma^2 = \frac{36419.5}{9} - \frac{603.4^2}{90}$ = 1.149 (431/375)		M1	M0 division by 10 Answer only no marks	
(c)	Test sta	$t = \frac{60.34 - 61}{\sqrt{\frac{1.149}{10}}}$	1313)	M1A1	M0 for no working
	=	- 1.947		A1	Note that p -value = 0.0417
	DF = Crit t valu	e = 1.833		B1 B1	
		e miles per gal	hould reject H_0 , ie lon is less than 61	B1 B1	FT the conclusion No FT for reason if <i>z</i> -value used

3(a) $\hat{p} = \frac{44}{80} = 0.55 \text{ si}$ $ESE = \sqrt{\frac{0.55 \times 0.45}{80}} (= 0.0556) \text{ si}$ $90\% \text{ confidence limits are}$ $0.55 \pm 1.645 \times 0.0556$ $\text{giving } [0.459,0.641]$ (b) (i) $\hat{q} = \frac{0.555 + 0.705}{2} = 0.63$ $\text{Games won} = 0.63 \times 100 = 63$ (ii) $0.705 - 0.555 = 2 \times z \sqrt{\frac{0.63 \times 0.37}{100}} \text{ or equiv}$ $z = 1.55$ Prob from tables = 0.0606 (0.9394) Confidence level = 88% 41 4(a) $H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$ $\bar{x} = 251.6; \bar{y} = 251.4 \text{ or } \bar{x} - \bar{y} = 0.2$ $s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$ $[Accept division by 80 giving 0.64 and 0.815]$ $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ $x = \frac{251.6 - 251.4}{0.135}$ $= 1.47 \text{ or } 1.48$ Prob from tables = 0.071 or 0.069 p -value = 0.14 Insufficient evidence to reject H₀ B1 M1A1 M1A2 M1A3 M1A1 M1A1 M1 correct form, A1 correct of mixing mi		Notes	Mark	Solution	Ques
ESE = $\sqrt{\frac{0.55 \times 0.45}{80}}$ (= 0.0556) si			B 1	$\hat{p} = \frac{44}{100} = 0.55$ si	3(a)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:d	M1A0 if $$ omitted	M1A1		
Games won = $0.63 \times 100 = 63$ $0.705 - 0.555 = 2 \times z \sqrt{\frac{0.63 \times 0.37}{100}} \text{ or equiv}$ $z = 1.55$ Prob from tables = $0.0606 (0.9394)$ Confidence level = 88% A1 A1 A1 A1 A1 A1 A1 A1 A1 A	orrect z	M1 correct form, A1 corre		$0.55 \pm 1.645 \times 0.0556$	
(ii) $0.705 - 0.555 = 2 \times z \sqrt{\frac{0.63 \times 0.37}{100}} \text{ or equiv}$ $z = 1.55$ Prob from tables = 0.0606 (0.9394) Confidence level = 88% 41 4(a) $H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$ $\bar{x} = 251.6; \bar{y} = 251.4 \text{ or } \bar{x} - \bar{y} = 0.2$ $s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$ $A1$ $S_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$ [Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)}$ $z = \frac{251.6 - 251.4}{0.135}$ $= 1.47 \text{ or } 1.48$ Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ FT from line above			B1	$\hat{q} = \frac{0.555 + 0.705}{2} = 0.63$	(b)(i)
$0.705 - 0.555 = 2 \times z \sqrt{\frac{0.03 \times 0.57}{100}} \text{or equiv}$ $z = 1.55$ Prob from tables = 0.0606 (0.9394) Confidence level = 88% 41 $\frac{A1}{A1}$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$			B1	Games won = $0.63 \times 100 = 63$	
Prob from tables = 0.0606 (0.9394) Confidence level = 88% 4(a) $H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$ B1 $\bar{x} = 251.6; \bar{y} = 251.4 \text{ or } \bar{x} - \bar{y} = 0.2$ $s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$ M1A1 $s_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$ A1 [Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ M1A1 $z = \frac{251.6 - 251.4}{0.135}$ m1 $z = \frac{1.47 \text{ or } 1.48}{0.135}$ A1 Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ FT from line above			M1A1	$0.705 - 0.555 = 2 \times z \sqrt{\frac{0.63 \times 0.37}{100}}$ or equiv	(ii)
Confidence level = 88% 4(a) $H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$ B1 B1 $\bar{x} = 251.6; \bar{y} = 251.4 \text{ or } \bar{x} - \bar{y} = 0.2$ $s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$ M1A1 $s_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$ A1 [Accept division by 80 giving 0.64 and 0.815] SE = $\sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135$ (0.1348) M1A1 $z = \frac{251.6 - 251.4}{0.135}$ m1 $z = \frac{1.47 \text{ or } 1.48}{0.135}$ A1 Prob from tables = 0.071 or 0.069 p -value = 0.14 FT from line above					
4(a) $H_0: \mu_A = \mu_B; H_1: \mu_A \neq \mu_B$ B1 $\bar{x} = 251.6; \bar{y} = 251.4 \text{ or } \bar{x} - \bar{y} = 0.2$ $s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$ M1A1 $s_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$ A1 [Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ M1A1 $z = \frac{251.6 - 251.4}{0.135}$ m1 A1 Prob from tables = 0.071 or 0.069 p -value = 0.14 PT from line above				· · · · · · · · · · · · · · · · · · ·	
(b) $\overline{x} = 251.6; \overline{y} = 251.4 \text{ or } \overline{x} - \overline{y} = 0.2$ $S_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$ M1A1 $S_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$ A1 [Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ M1A1 $z = \frac{251.6 - 251.4}{0.135}$ m1 A1 Prob from tables = 0.071or 0.069 p -value = 0.14 Prob from tables = 0.071or 0.069 p -value = 0.14 Prob from tables = 0.071or 0.069 p -value = 0.14				Confidence level = 00 %	
$s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$ $s_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$ [Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ $z = \frac{251.6 - 251.4}{0.135}$ $= 1.47 \text{ or } 1.48$ Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ M1A1 M1A1 A1 A1 FT from line above					` ′
$s_y^2 = \frac{5056222}{79} - \frac{20112^2}{79 \times 80} = 0.825(326/395)$ [Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ $z = \frac{251.6 - 251.4}{0.135}$ $= 1.47 \text{ or } 1.48$ Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ M1A1 A1 A1 A1 FT from line above			В1		(b)
[Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ $z = \frac{251.6 - 251.4}{0.135}$ $= 1.47 \text{ or } 1.48$ Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ M1A1 A1 A1 B1 FT from line above			M1A1	$s_x^2 = \frac{5064256}{79} - \frac{20128^2}{79 \times 80} = 0.648(256/395)$	
[Accept division by 80 giving 0.64 and 0.815] $SE = \sqrt{\frac{0.648}{80} + \frac{0.825}{80}} = 0.135 (0.1348)$ $z = \frac{251.6 - 251.4}{0.135}$ $= 1.47 \text{ or } 1.48$ Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ M1A1 A1 A1 B1 FT from line above			A1	$s_y^2 = \frac{5056222}{70} - \frac{20112^2}{70 \times 80} = 0.825(326/395)$	
$z = \frac{251.6 - 251.4}{0.135}$ =1.47 or 1.48 Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ m1 A1 A1 B1 FT from line above			M1A1	[Accept division by 80 giving 0.64 and 0.815]	
=1.47 or 1.48 Prob from tables = 0.071 or 0.069 $p-value = 0.14$ A1 B1 FT from line above				$z = \frac{251.6 - 251.4}{1.00}$	
Prob from tables = 0.071 or 0.069 $p\text{-value} = 0.14$ A1 B1 FT from line above			A1		
p value = 0.14		ET 6 1: 1		Prob from tables = 0.071 or 0.069	
Insufficient evidence to reject H_0 B1 FT the p-value		F1 from line above	B1	p-value = 0.14	
		FT the p-value	B1	Insufficient evidence to reject H ₀	
(c) The CLT allows us to assume that the distributions of the sample means are (approximately) normal B1			B1		(c)

Ques	Solution	Mark	Notes
5 (a)	$\sum x = 210, \sum x^2 = 9100,$	B2	Minus 1 each error
	$\sum y = 1286, \sum xy = 48730$	D2	Willius 1 Each effor
	$S_{xy} = 48730 - 210 \times 1286 / 6 = 3720$	B1	
	$S_{xx} = 9100 - 210^2 / 6 = 1750$	B1	
	$b = \frac{3720}{1750} = 2.13 (372/175)$	M1A1	M0 no working
	$a = \frac{1286 - 2.13 \times 210}{6} = 140 (2099/15)$	M1A1	M0 no working
(b)(i)	SE of $b = \frac{1.5}{\sqrt{1750}}$ (0.0358)	M1A1	FT from (a)
	95% confidence limits are $2.1257 \pm 1.96 \times 0.0358$ [2.06, 2.20]	m1A1 A1	
(ii)	$x_0 = 35$	B1	
	Because the SE of <i>y</i> or the width of the interval is minimum when $x_0 = \overline{x}$	B1	
	v		

Ques	Solution	Mark	Notes
6(a)(i)	$\sum_{i=1}^{n} F(X_i)$		
	$E(\overline{X}) = \frac{\sum_{i=1}^{n} E(X_i)}{n}$	M1	
	D(X) = n	1,11	
	$=\frac{n\mu}{m}=\mu$	A1	
	n	AI	
	(Therefore \overline{X} is an unbiased estimator)		
(ii)			
	$\sum_{i=1}^{n} \operatorname{Var}(X_{i})$		
	$\operatorname{Var}(\overline{X}) = \frac{\sum_{i=1}^{n} \operatorname{Var}(X_i)}{n^2}$	M1	
	$=\frac{n\sigma^2}{n^2}=\frac{\sigma^2}{n}$	A1	
	SE of $\overline{X} = \frac{\sigma}{\sqrt{n}}$		
(b)(i)	$Var(X_i) = E(X_i^2) - [E(X_i)]^2$	M1	
	$\sigma^2 = E(X_i^2) - \mu^2$	A1	
	$E(X_i^2) = \mu^2 + \sigma^2$	111	
	$E(X_i) - \mu + 0$		
(ii)	$\sum_{i=1}^{n} E(\mathbf{V}^{2}) = E(\overline{\mathbf{V}}^{2})$	M1	
	$E(S^{2}) = \frac{\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\overline{X}^{2})}{n-1}$	M1	
	n-1		
	$=\frac{n(\mu^2+\sigma^2)-n\left(\mu^2+\frac{\sigma^2}{n}\right)}{n-1}$		
	$=\frac{n(\mu+\sigma)\cdot n(\mu+n)}{n}$	A1A1	
	$=\sigma^2$		
(c)	$Var(S) = E(S^2) - [E(S)]^2$	M1	
	$[E(S)]^2 = \sigma^2 - \text{Var}(S)$	M1	
	$(E(S)) = O - \text{var}(S)$ $< \sigma^2 \text{ (since Var}(S) > 0)$	A1	
	$<\sigma$ (since $var(s) > 0$) Therefore	AI	
	$E(S) < \sigma \text{ so } E(S) \neq \sigma$	A1	FT above line if both M marks
	(Therefore S is not an unbiased estimator for σ)		awarded