

GCE MARKING SCHEME

SUMMER 2016

Mathematics - S2 0984/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - S2 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes
1(a)	E(W) = 6	B1	
	$E(X^2) = \text{Var}(X) + [E(X)]^2 = 6$	M1A1	
	$E(Y^2) = Var(Y) + [E(Y)]^2 = 12$	A1	
	$Var(W) = E(X^{2})E(Y^{2}) - [E(X)E(Y)]^{2}$ = 36	M1A1	
<i>a</i>)	The possibilities are $(1,4)$; $(2,2)$; $(4,1)$ si	B1	A 1.1 N/1 C 1.1 1
(b)	$Pr = 2e^{-2} \times \frac{3^4}{4!}e^{-3} + \frac{2^2}{2!}e^{-2} \times \frac{3^2}{2!}e^{-3} + \frac{2^4}{4!}e^{-2} \times 3e^{-3}$	M1A1	Award the M1 for multiplying and adding Poisson
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		probabilities. Accept use of
2()	- 0.12	A1	tables
2(a)	627.2		M0 no working
	$\bar{x} = \frac{637.2}{10} = 63.7(2)$	B1	WO NO WORKING
	SE of $\bar{x} = \frac{1.9}{\sqrt{10}}$ (0.6008)	M1A1	
	95% confidence interval limits are	M1A1	
	$63.7(2) \pm 1.96 \times 0.6008$		
<i>a</i>)	giving [62.5,64.9]	A1	
(b)	Width of 95% CI = $2 \times 1.96 \times \frac{1.9}{\sqrt{n}} = 1$	M1A1	FT their z from (a)
	n = 55.47	A1	
	Minimum $n = 56$ cao	A1	
3(a)	Upper quartile = $40 + 0.674(5) \times 2.5$	M1	M0 no working
a \ a	= 41.7	A1	
(b)(i)	Let X =weight of a male, Y =weight of a female		
	Let $U = X_1 + X_2 + X_3 + Y_1 + Y_2$ $E(U) = 3 \times 40 + 2 \times 32 = 184$	B 1	
	$E(U) = 3 \times 40 + 2 \times 32 = 184$ $Var(U) = 3 \times 2.5^2 + 2 \times 1.5^2 = 23.25$	B1	
	$z = \frac{185 - 184}{\sqrt{23.25}} = 0.21$	M1A1	
	$\sqrt{23.25}$ -0.21		. 0 417
	Prob = 0.4168	A1	Accept 0.417
(ii)	Let $W = X_1 + X_2 + X_3 - 2(Y_1 + Y_2)$	M1	
	$E(W) = 3 \times 40 - 4 \times 32 = -8$	A1	
	$Var(W) = 3 \times 2.5^2 + 8 \times 1.5^2 = 36.75$	M1A1	
	$z = \frac{8}{\sqrt{36.75}} = 1.32$	m1A1	
	$\sqrt{36.75}$ Prob = 0.9066	A1	Accept 0.907
	1100 – 0.7000		1 сесері 0.507

Ques	Solution	Mark	Notes
4(a)	Under H_0 , $E(\overline{X} - \overline{Y}) = 0$	B1	
	Var $(\overline{X} - \overline{Y}) = \frac{1.5^2}{8} + \frac{2.5^2}{12} (= 0.802) (77/96)$ H ₁ is accepted if	B1	
	$\frac{\left \overline{X} - \overline{Y}\right }{\sqrt{0.802}} > 1.645$	M1A1	
	$\left \overline{X} - \overline{Y} \right > 1.473$ So $k = 1.473$	A1	Accept 1.47
(b)(i)			
	Now, $E(\overline{X} - \overline{Y}) = 0.5$ si	B1	FT k and variance
	$ H_0 $ is accepted if $ \overline{X} - \overline{Y} \le 1.473$, ie	M1	
	$-1.473 \le \overline{X} - \overline{Y} \le 1.473$ $1.473 - 0.5$	A1	
	$z_1 = \frac{1.473 - 0.5}{\sqrt{0.802}} = 1.09$	M1A1	Accept 1.08
	$z_2 = \frac{-1.473 - 0.5}{\sqrt{0.802}} = -2.20$	A1	
	Required probability = $0.8621 - 0.0139$	m1	Accept 0.8599 – 0.0139
(ii)	= 0.848	A1	Accept 0.846
	An appropriate comment, eg The test is unlikely to detect small differences.	B 1	FT probabilities greater than 0.5
	This is a very high error probability.		
5(a)(i)	$H_0: p = 0.7; H_1: p < 0.7$	B1	
(**)			
(ii)	Let <i>X</i> denote number of seeds which germinate.	D1	
	Under H ₀ , <i>X</i> is B(50,0.7) si p -value = P($X \le 32$)	B1 B1	
	Let Y denote number of non-germinating seeds.	DI	
	Under H_0 , Y is B(50,0.3) si	B1	
	p -value = $P(Y \ge 18)$	M1	
	= 0.2178	A1	
	Insufficient evidence to reject the seed		
	manufacturer's claim.	B1	FT the p -value if > 0.05
(b)	Under H_0 , X is now B(500,0.7) \approx N(350,105) si	B1B1	B1 mean, B1 variance
	Test statistic = $\frac{329.5 - 350}{\sqrt{105}}$	M1A1	Award M1A0 for incorrect or no
	$\sqrt{105}$ = -2.00		continuity correction but FT for
	p-value = 0.0227 or 0.0228	A1	following marks
	p value 5.0227 of 5.0220	A1	No cc, $z = -2.05$, $p = 0.0202$
			Wrong $cc, z = -2.10, p = 0.0179$
	Strong evidence to conclude that the germination rate is less than 0.7	B1	FT the p -value if < 0.05

Ques	Solution	Mark	Notes
6(a)	$P(Y \le 8) = P(X \ge 12)$	M1	Award the M1 for stating that <i>Y</i>
	= 0.8	A1	is uniform on [0,10]
(b)(i)	Y = 20 - X	B1	
(ii)	P(XY > 64) = P[X(20 - X) > 64]	M1	
	$= P(X^2 - 20X + 64 < 0)$	A1	
	The critical values are 4 and 16	A1	
	OR $P[(X-4)(X-16)] < 0$		
	The required region is $X < 16$	A1	
(c)	Prob = 0.6	A1	
	EITHER Prob density of X is $f(x) = 0.1$ (10 < x < 20) si $E(XY) = \int_{10}^{20} (20x - x^2) \times \frac{1}{10} dx$ $= \frac{1}{10} \left[10x^2 - \frac{x^3}{3} \right]_{10}^{20}$ $= 66.7 (200/3)$ OR	B1 M1A1 A1 A1	Limits may be left until the next line
	$E(XY) = 20E(X) - E(X^2)$	(M1)	
	E(X) = 15	(B1)	
	$E(X^2) = \operatorname{Var}(X) + [E(X)]^2$	(M1)	
	=100/12+225 (700/3)	(A1)	
	E(XY) = 66.7 (200/3)	(A1)	