Surname	Centre Number	Candidate Number
Other Names		2

GCE AS - NEW

B500U10-1

COMPUTER SCIENCE – AS component 1 Fundamentals of Computer Science

MONDAY, 5 JUNE 2017 – MORNING 2 hours

For Exa	For Examiner's use only					
Question	Maximum Mark	Mark Awarded				
1.	5					
2.	4					
3.	4					
4.	20					
5.	10					
6.	6					
7.	11					
8.	6					
9.	4					
10.	8					
11.	12					
12.	10					
Total	100					

ADDITIONAL MATERIALS

The use of a calculator is permitted in this examination.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball point pen.

Write your name, centre number and candidate number in the space at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the need for good English and orderly, clear presentation in your answers.

The total number of marks available is 100.

Answer all questions.

1.	(a)	Defi	ne the term Internet.	[1]
	(b)	Nam	ne the most appropriate networking protocols for the following situations:	
		(i)	Broadcasting data where there is no need to guarantee delivery, ordering duplicate protection.	ng oi [1]
		(ii)	Transferring multimedia web pages over the Internet.	[1]
		(iii)	Adding devices to a network without the need for manually assigning them a ur IP address.	nique [1]
		(iv)	Downloading email from a mail server.	[1]

2.	Describe the fetch-execute cycle, including how data is read from RAM into registers. [4]

B500U101 03

 	 ••••••	 •	 •••••	 	 	
 	 ••••••	 ••••••	 •••••	 •••••	 	
 	 	 •	 •	 •	 	
 	 	 •	 •	 •••••	 	
 	 	 	 	 	 	•••••

0.5

4.	(a)	Conv	overt the denary numbers 106_{10} and 57_{10} into their equivalents.	alent unsigned 8 bit binary
		Carr bina	ry out the binary addition of the two resulting 8 bit bina ary answer into a hexadecimal number.	ıry numbers. Convert you
		Shov	w all of your workings.	[5]
	•	•••••		
	•····	•••••		
	•			
	•			
	(b)	(i)	Using the denary numbers $+8_{10}$ and -8_{10} , describe I integers are stored using sign and magnitude represent	now positive and negative ation. [3]
		······		
		•		

		(ii)	Describe how the denary number -8_{10} is stored representation.	using two's complement [2]
		·······		

		•••••		

Mantissa Exponent 0 1 1 1 1 0 0 0 0 1 0 1						Man	tions						Eve	anan	4
exponent use two's complement representation. Convert the number 2.375 ₁₀ into this floating-point form. (ii) In the same computer system, a floating-point representation of a real numb shown below. Mantissa Exponent 0 1 1 1 1 1 0 0 0 0 1 0 1 Calculate the denary value of the mantissa and exponent, and convert		Γ				Man	lissa				7		EXP	onen	<u> </u>
exponent use two's complement representation. Convert the number 2.375 ₁₀ into this floating-point form. (ii) In the same computer system, a floating-point representation of a real numb shown below. Mantissa Exponent 0 1 1 1 1 1 0 0 0 0 1 0 1 Calculate the denary value of the mantissa and exponent, and convert															
shown below. Mantissa Exponent 0 1 1 1 1 0 0 0 0 1 0 1 Calculate the denary value of the mantissa and exponent, and convert		e	xpone	ent us	e two's	s com	pleme	ent rep	resen	tation			t. Bot	th ma	ntissa
Mantissa Exponent 0 1 1 1 1 0 0 0 0 1 0 1 Calculate the denary value of the mantissa and exponent, and convert							•••••								
Calculate the denary value of the mantissa and exponent, and convert								o fla	ation	no int					
Calculate the denary value of the mantissa and exponent, and convert floating-point number into a denary number.	(ii)							ı, a flo	oating-	point	repres	entatio			
	(ii)		nown	belov	v	Man	tissa				repres		Exp	onen	t .
	(ii)	sl	nown 0	below 1	v. 1	Man 1	tissa 1	0 of the	0 e mar	0 ntissa		0	Exp	oonen 0	t

(iii)	Give the advantages of representing numbers in integer advantages of representing numbers in floating-point form.	form	and	give	the [4]
•••••					
•••••		•••••			••••••
					······································
••••					······
		• • • • • • • • • • • • • • • • • • • •			
•••••					•••••
•••••					

3500U101

	State what is meant by the term algorithm and give two common methods of defini algorithms.
•••••	
(b)	Write an algorithm that will determine if a positive integer entered is odd or even.
	Your algorithm should output a suitable error message if the integer entered is greathan 100.
	Your algorithm should be written using self-documenting identifiers.
•••••	
•••••	
·············	

6.	Clearly showing	ig each step	, simplify the	following	Boolean e	expression:

A.($B+C)+B.(A+\overline{B})+C.(\overline{A}+C)$	[6]

000101

7. The following algorithm sorts integers stored in myArray.

```
Declare Procedure SortMyArray
3 myArray [0...3] is integer {declares the array}
4
5 i is integer
6 j is integer
7 n is integer
8 currentItem is integer
  inserted is boolean
9
10
11 set n = ubound[myArray] {total number of items in array}
12
13 for i = 1 to n - 1
14
     set currentItem = myArray[i]
15
     set inserted = false
     set j = i - 1
16
17
18
     Do
19
           if (currentItem < myArray[j]) then</pre>
20
               myArray[j + 1] = myArray[j]
21
               j = j - 1
22
               myArray[j + 1] = currentItem
23
           Else
24
               inserted = true
25
           End If
     While (j >= 0 AND inserted = false)
26
27
28 next i
29
30 End
```

(a) The following data is stored in myArray:

Examin	е
only	

Show	the four effects that this algorithm	will ha	ave on	the dat	a withi	n the array.	[4	4]
		(0)	(1)	(2)	(3)			
	Original Data	1	3	9	2			
	Effect 1							
	Effect 2							
	Effect 3							
	Effect 4							
			myA:	rray				
(b)	State the name given to this type	of sort	and de	escribe	its fun	ction.	[2	2]
• • • • • • • • • • • • • • • • • • • •								···•
• • • • • • • • • • • • • • • • • • • •				•••••				· · · •
								···•
								.
			***				_	
(c)	Name a logical operator used in t	ne alg	orithm.				L	[1]
•••••					• • • • • • • • • • • • • • • • • • • •			••••
• • • • • • • • • • • • • • • • • • • •								···•
(d)	Give an example of selection from	n the a	lgorithr	m and s	state its	s purpose.	[2	2]
•••••								••••
•••••								••••
•••••								
(e)	Give an example of repetition from	m the a	algorith	m and	state it	s purpose.	[2	2]

								· · · •

8.	Describe the features of the mark-up language programming paradigm. [6]	exar

Examiner

9.	Explain lossy data compression techniques.	[4]	onl

© WJEC CBAC Ltd. (B500U10-1) Turn over.

10.	(a)	Describe the terms file and record within a computer system. [2]	Examiner only
	(b)	Explain what is meant by a fixed length field and a variable length field and give ar example of data that could sensibly be stored in each field type. [6]	

BLANK PAGE

© WJEC CBAC Ltd. (B500U10-1) Turn over.

A mo	bile phone company uses indexed sequential files and direct (random) access file uter system.	es on it
(a)	Describe indexed sequential file organisation.	[2

•••••		
(b)	Describe direct (random) access file organisation and how overflow is used.	[6
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		

Examiner only

(c) Draw a clearly labelled diagram that shows how a transaction file and master file are used to produce a monthly mobile phone bill for each customer. [4]

nterface.		1 0	,	g resources		[

END OF PAPER