

GCE AS/A Level – LEGACY

0976/01

MATHEMATICS – C4 Pure Mathematics

FRIDAY, 15 JUNE 2018 – AFTERNOON 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- · a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

© WJEC CBAC Ltd. CJ*(S18-0976-01)

- **1.** Given that $f(x) = \frac{3x^2 3x 8}{x(x-2)^2}$,
 - (a) express f(x) in terms of partial fractions, [4]
 - (b) evaluate

$$\int_{6}^{9} f(x) \, \mathrm{d}x,$$

giving your answer correct to two decimal places.

2. The curve C has equation

$$x^2 - y^3 - 3xy + 1 = 0.$$

The point P has coordinates (-2, -1) and lies on C.

(a) Show that the equation of the tangent to C at the point P is given by

$$x = 3y + 1.$$
 [4]

[3]

- (b) The tangent to C at the point P intersects C again at the point Q. Find the coordinates of Q. [5]
- 3. (a) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$2\cos 2\theta = 3\sin^2\theta - 5\cos^2\theta + \cos\theta + 1.$$
 [6]

- (b) (i) Express $12\sin\phi 5\cos\phi$ in the form $R\sin(\phi \alpha)$, where R and α are constants with R > 0 and $0^\circ < \alpha < 90^\circ$.
 - (ii) Hence find all values of ϕ in the range $0^{\circ} \leqslant \phi \leqslant 360^{\circ}$ satisfying

$$12\sin\phi - 5\cos\phi = -2. \tag{6}$$

- **4.** (a) Expand $\frac{1}{(1+2x)^2}$ in ascending powers of x up to and including the term in x^2 . [2]
 - (b) (i) Use your answer to part (a) to expand $\left(\frac{1+3x}{1+2x}\right)^2$ in ascending powers of x up to and including the term in x^2 .
 - (ii) State the range of values of x for which your expansion is valid. [4]

5. The region shaded in the diagram below is bounded by the *x*-axis, the *y*-axis, and that part of the curve with equation $x^2 + y^2 = a^2$ (a > 0) lying in the first quadrant. The curve intersects the *x*-axis at the point *Q*.

(a) Write down the x-coordinate of Q.

[1]

[4]

- (b) (i) By carrying out an appropriate integration, find the volume generated when the region shaded in the diagram is rotated through four right-angles about the *x*-axis.
 - (ii) Give a geometrical interpretation of your answer.
- **6.** The curve *C* has the parametric equations

$$x = \frac{3}{t^2}, \quad y = 4t^3.$$

The point P lies on C and has parameter p. Find and simplify the equation of the tangent to C at the point P.

7. (a) Find
$$\int (4x+1)e^{4x-5}dx$$
. Simplify your answer. [4]

(b) (i) Use the substitution $x = 4\sin\theta$ to show that

$$\int_0^{2\sqrt{2}} \frac{x^2}{\sqrt{(16-x^2)}} dx = \int_0^a b \sin^2 \theta d\theta,$$

where a and b are constants whose values are to be determined.

(ii) Hence, evaluate

$$\int_{0}^{2\sqrt{2}} \frac{x^2}{\sqrt{(16-x^2)}} dx.$$

Give your answer in the form $c\pi + d$, where c and d are integers whose values are to be determined. [8]

- **8.** The value of a painting on January 1st 2000 was £900. The value, £V, of the painting t years after this date may be modelled as a continuous variable. The rate of increase of V may be assumed to be directly proportional to $V^{\frac{3}{2}}$.
 - (a) Write down a differential equation satisfied by V. [1]
 - (b) The value of the painting on January 1st 2003 was £1600. Find its value on January 1st 2008. [8]
- **9.** (a) The vectors \mathbf{p} and \mathbf{q} are given by

$$p = 3i - 2j + 7k,$$

 $q = i + 6j - 4k.$

Find the angle between p and q. Give your answer in degrees, correct to one decimal place. [4]

- (b) The position vectors of the points A and B are denoted by \mathbf{a} and \mathbf{b} respectively. The points C and D have position vectors $4\mathbf{a} \mathbf{b}$ and $-10\mathbf{a} + 5\mathbf{b}$ respectively. The point E lies on CD and is such that CE : ED = 1 : 3.
 - (i) Find and simplify an expression for the position vector of the point E in terms of a and b.
 - (ii) Interpret your result geometrically. [4]
- **10.** Prove by contradiction the following proposition.

When x is real and positive,

$$25x + \frac{4}{x} \geqslant 20.$$

The first line of the proof is given below.

Assume that there is a real and positive value of x such that

$$25x + \frac{4}{x} < 20. ag{3}$$

END OF PAPER