

GCE MARKING SCHEME

SUMMER 2018

MATHEMATICS - M1 (LEGACY) 0980-01

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – M1

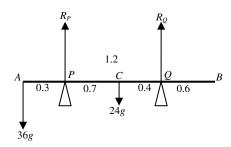
SUMMER 2018 MARK SCHEME

Q	Solution	Mark	Notes
1(a)(i)	N2L on lift, upwards +ve	M1	dim correct, all forces <i>T</i> and 1200 <i>g</i> opposing
	T - 1200g = 1200a		
	T = 1200(9.8 + 0.2)	A1	any correct form
	T = 14160 (N)	A1	cao
1(a)(ii)	T = 1200g = 11760 (N)	B1	
1(b)	M_{α} $P = M_{\alpha}$	M1	dim correct, all forces
1(0)	Mg - R = Ma	IVI I	No extra
	M(9.8 - 3) = 442	A1	any correct form
	M = 65	A 1	cao

© WJEC CBAC Ltd.

Q	Solution	Mark	Notes	
2	Resolve in one direction	M1	obtain comp of resultant All forces, no extra	
	$X = 16 - 9\cos 75^{\circ} - 21\sin 60^{\circ}$ $X = -4.5159$	A1	•	
	Resolve in perpendicular direction	M1	obtain comp of resultant All forces, no extra.	
	$Y = 8 + 21\cos 60^{\circ} - 9\sin 75^{\circ}$ Y = 9.8067	A1	The forest, no chain	
	Resultant ² = $4.5159^2 + 9.8067^2$ Resultant = 10.8 (N)	m1 A1	dep on both M's cao	
	$\theta = \tan^{-1} \left(\frac{4.5159}{9.8067} \right)$	m1		
	$\theta = 24.7^{\circ}$	A1	cao	

Note


-1 if answers not 1 d.p.

 $\hbox{@ WJEC CBAC Ltd.} \\$

Mark

Notes

3.

Moments about P M1dim correct equation All forces, no extra $36g \times 0.3 + R_O \times 1.1 = 24g \times 0.7$ **B**1 any correct moment **A**1 correct equation $R_Q = 53.45 \text{ (N)}$ **A**1 cao Resolve vertically dim correct equation M1All forces, no extra **A**1

 $R_Q + R_P = 36g + 24g$ A1 $R_P = 534.55$ (N) A1 cao

Notes

Moments about any point

Correct moment

Correct equation

Attempt at second equation

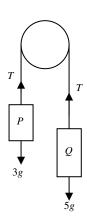
Correct equation

M1

Correct equation

M1

Correct answers


A1A1

3

© WJEC CBAC Ltd.

Mark Notes

4(a)

Apply N2L to Q

5g - T = 5a

Apply N2L to P

T - 3g = 3a

Adding

8a = 2g

 $a = 2.45 \text{ (ms}^{-2}\text{)}$ T = 36.75 N

4(b) Light string gives rise to tension constant throughout the string.

4(c) Smooth peg means that the tensions in the strings on both sides of the peg are equal.

Notes (Newton's method)

Attempt at Newton's method

5g - 3g = (5+3)a $a = 2.45 \text{ (ms}^{-2})$

N2L applied to either particle

T-3g = 3a T = 3(9.8 + 2.45)T = 36.75 N M1 5*g* and *T* opposing, dim. correct

A1 correct equ, allow –ve a

M1 4*g* and *T* opposing, dim. Correct

A1 correct equ consistent with first equation

m1

A1 cao A1 cao

B1

B1

M1 forces subtracted, masses added

A1

A1 cao

M1 wt and *T* opposing, dim.

Correct

A1

m1 substitution

A1 cao

Mark Notes

5(a)
$$I = \text{change in momentum}$$
 M1 used $I = 0.16(20 - (-12))$ A1

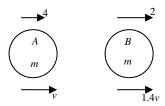
5(b)
$$I = Ft$$
 M1 used
 $5.12 = F \times \frac{1}{8}$
 $F = 40.96$ (N) A1 ft answer in (a)

© WJEC CBAC Ltd.

5

Mark Notes

- 6(a) Vel of *A* when *B* starts to fall $v^2 = u^2 + 2as$, u = 0, $a = (\pm)9.8$, $s = (\pm)0.1$ $v^2 = 0 + 2 \times 9.8 \times 0.1$ A1 $v = \frac{7}{5}$ A1 cao
- 6(b) Vel of *A* when it reaches the ground $v^2 = u^2 + 2as$, u = 0, $a = (\pm)9.8$, $s = (\pm)40$ M1 $v^2 = 0 + 2 \times 9.8 \times 40$ v = 28 A1
- 6(c) Time of travel of B = time for A to reach ground $v = u + at, u = \frac{7}{5}, v = 28, a = 9.8$ $28 = \frac{7}{5} + 9.8t$ $t = \frac{19}{7}$ A1


 A1

 A1

Distance travelled by *B* in that time $s = ut + \frac{1}{2}at^2, u = 0, a = 9.8, t = \frac{19}{7}$ M1 $s = 0 + \frac{1}{2} \times 9.8 \times \left(\frac{19}{7}\right)^2$ s = 36.1A1 ft candidates' 19/7 s = 36.1Distance between *A* and *B* = 40 – 36.1 = 3.9 (m)A1 cao

Mark Notes

7(a)

Conservation of momentum

$$4m + 2m = mv + m \times 1.4v$$

$$2.4v = 6$$

$$v = 2.5$$

Restitution

$$1.4 \times 2.5 - 2.5 = -e(2-4)$$

$$e = 0.5$$

M1dim correct equ.

A1 cao

no more than 1 sign error M1

A1 ft v in (a)

ft v in (a) provided $0 \le < 1$. **A**1

7(b)Speed of B after collision = v'

$$v' = 3.5 \times 0.6$$

$$v' = 3.3 \times 0.0$$

 $v' = 2.1 \text{ (ms}^{-1})$

M1

A1 ft v_A

ft v_A

7(c) Distance between A and B at time of

collision with the wall =
$$(3.5 - 2.5) \times 5$$

B1 ft v, 1.4v

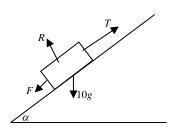
After collision with wall, A and B

velocity =
$$2.1 + 2.5 = 4.6$$

B1 ft *v*, *v*'

Time to second collision between A and B

$$=\frac{5}{4\cdot 6}$$


=
$$1.09$$
 (s)(correct to 2 d.p.)

B1 cao

Mark

Notes

8.

Resolve perpendicular to plane

$$R = 10g \cos \alpha$$

B1

$$F = 10g\mu\cos\alpha$$

With T acting upwards N2L applied to particle

dim correct, all forces M1

$$T - F - mg \sin \alpha = ma$$

$$98 - F - 10g \sin \alpha = 0$$

A1

$$F - T' - 10g \sin \alpha = ma$$

$$F - 49 - 10g \sin \alpha = 0$$

$$r - 49 - 10g \sin \alpha$$

Adding

$$98 - 49 = 20 \times 9.8 \times \sin \alpha$$

m1

$$\sin\alpha = \frac{1}{4}$$

$$\cos\alpha = \frac{\sqrt{15}}{4}$$

$$\mu = \frac{F}{R}$$

$$\mu = \frac{49 + 10 \times 9 \cdot 8 \times 0 \cdot 25}{10 \times 9 \cdot 8 \times \frac{\sqrt{15}}{4}}$$

$$\mu = \frac{\sqrt{15}}{5} = \sqrt{\frac{3}{5}} = 0.7746$$

© WJEC CBAC Ltd.

Q	Solution			Mark	Notes
9(a).	$\bar{x} = 4 \text{ (cm)}$			B1	
9(b)	Shape	mass	distance(y)		
	ABCE ECD PQR ABCDE	40 36 12 64	2.5 8 7 - y	B1 B1 B1	2.5 8 7 areas
	Moments al	bout AB	M1	dim correct equation	
	$64\bar{y} + 12x'$	$7 = 40 \times 2.5 +$	A1	ft table if consistent	
	$\bar{y} = 4.75$ (c	em)		A1	cao