

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

973/01

MATHEMATICS C1

Pure Mathematics

P.M. TUESDAY, 10 January 2006 $(1\frac{1}{2} \text{ hours})$

NEW SPECIFICATION

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Calculators are **not** allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A, B, C have coordinates (-2, -3), (6, 1) and (k, 3) respectively. The line AB is perpendicular to BC.

(a) Find the gradient of
$$AB$$
. [2]

(*b*) Show that
$$k = 5$$
. [3]

- (c) The line L is parallel to BC and passes through A. Find the equation of L. [2]
- (d) The line L intersects the y-axis at D. Calculate the length of CD. [3]
- 2. (a) Simplify the following.

$$\sqrt{48} + \sqrt{27} - \frac{6}{\sqrt{3}}$$
 [4]

(b) Simplify
$$\frac{2+\sqrt{7}}{3+\sqrt{7}}$$
, expressing your answer in surd form. [4]

3. Find the equation of the normal to the curve $y = 4x^2 - 7x + 2$ at the point (2, 4).

4.

The diagram shows the graph of y = f(x). The curve passes through the origin, the point (4, 0) and has a minimum point at (2, -4). Sketch on separate diagrams the graphs of

$$(a) \quad y = -f(x), \tag{2}$$

(b)
$$y = f(x-2)$$
, [3]

in each case giving the coordinates of the points of intersection of the graph with the x-axis and the coordinates of the stationary point.

5. Given that the quadratic equation

$$(k+2)x^2 + 4x + k + 5 = 0$$

has no real roots, show that

$$k^2 + 7k + 6 > 0$$
.

Find the range of values of *k* satisfying this inequality.

- **6.** (a) Given that when the polynomial $ax^3 x^2 7x + 6$ is divided by x 2 the remainder is 4, show that a = 2.
 - (b) Solve the equation $2x^3 x^2 7x + 6 = 0$. [5]

[7]

- 7. (a) Using the binomial theorem, expand $(3x+2)^3$, simplifying each term of the expansion. [3]
 - (b) In the binomial expansion of $(1 + 2x)^n$ the coefficient of x^2 is twice the coefficient of x. Given that n > 0, find the value of n.
- **8.** (a) Given that $y = 2x^2 5x + 3$, find $\frac{dy}{dx}$ from first principles. [5]
 - (b) Given that $y = \frac{a}{x} + 2x^{\frac{3}{2}}$ and $\frac{dy}{dx} = 7$ when x = 4, find the value of the constant a. [4]
- 9. (a) Express $23 + 6x x^2$ in the form $b (x a)^2$, where the constants a and b are to be determined. Hence find the greatest value of $23 + 6x x^2$ and the corresponding value of x.
 - (b) Use the results found in (a) to deduce the least value of $\frac{1}{30 + 6x x^2}$. [2]

10. The curve *C* has equation

$$y = 2 + 6x^2 - 2x^3.$$

- (a) Find the coordinates and the nature of each of the stationary points of C. [7]
- (b) Sketch C, indicating clearly the nature of each of the stationary points. [3]
- (c) State clearly, giving a reason, the number of real roots of the equation

$$2 + 6x^2 - 2x^3 = 0.$$
 [2]