

CYD-BWYLLGOR ADDYSG CYMRU
Tystysgrif Addysg Gyffredinol
Uwch Gyfrannol/Uwch

980/01

MATHEMATICS M1

Mechanics 1

A.M. MONDAY, 16 January 2006

 $(1\frac{1}{2} \text{ hours})$

NEW SPECIFICATION

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Take g as 9.8 ms^{-2} .

INFORMATION FOR CANDIDATES

Graphical calculators may be used for this paper.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1.	A small object, of mass 0.02kg at the top of a building 160 m high, is dropped from rest.				
	(a)	Ignoring air resistance, calculate			
		(i)	the speed of the object as it hits the ground,		
		(ii)	the time taken for the object to reach the ground.	[6]	
	<i>(b)</i>	Assuming that the air resistance has magnitude 0.096 N, calculate			
		(i)	the magnitude of the acceleration of the object,		
		(ii)	the height of the object above the ground 4 s after it was dropped.	[6]	
2.	2 <i>m</i> kg	and and ollide Find	es A and B , of equal radii, lie at rest on a smooth horizontal table. Sphersphere B has mass $16m$ kg. Sphere A is projected with speed 3 ms^{-1} towards directly with it. The coefficient of restitution between A and B is $\frac{1}{2}$. If the speeds of A and B after the collision.	ds sphere <i>B</i> [7]	
3.	At time $t = 0$, Car A, which is travelling at a constant speed of 20 ms ⁻¹ on a straight horizon road, overtakes Car B travelling at a speed of 15 ms ⁻¹ . Car B immediately accelerates uniform and, T seconds later, it overtakes Car A, which has kept its speed at 20 ms ⁻¹ . The distance travell by each car in time T is 600 m. (a) Show that $T = 30$.			ates uniformly	

On the same diagram, draw velocity-time graphs for A and B. Find the time when the speeds of cars A and B are equal. [4]

[3]

[3]

Calculate the magnitude of the acceleration of car B.

Find the speed of car B at the moment it overtakes car A.

(b)

(c)

(d)

4. The diagram shows a body A, of mass 9 kg, connected by a light inextensible string passing over a smooth light pulley to a body B, of mass 5 kg. Body A is on a rough horizontal table and body B is hanging freely. The coefficient of friction between the body A and the table is \Box .

- (a) If the system is in equilibrium, show that $\Box \geqslant \frac{5}{9}$. [5]
- (b) If $\Box = 0.5$,
 - (i) show that the magnitude of the acceleration of the body A is 0.35 ms^{-2} ,
 - (ii) calculate the tension in the string. [8]
- **5.** A **non-uniform** rod AB, of mass 7.5 kg and length 8 m, rests horizontally in equilibrium on two smooth supports at C and D, where AC = 1.5 m and AD = 5.0 m. The reaction of the support at D on the rod is 56.7 N.
 - (a) Calculate the distance of the centre of gravity of the rod from C. [4]
 - (b) Determine the reaction of the support at C on the rod. [2]
- **6.** Four coplanar forces of magnitudes 10 N, $11\sqrt{3}$ N, 16 N and 3 N act at the point *P* in the directions as shown in the diagram.

Resolve the forces in two perpendicular directions and deduce the magnitude and direction of the resultant force. [10]

TURN OVER.

7. A uniform lamina consists of a right-angled triangle ABC with a circular hole, of radius 1.5 cm, cut out of it. Lengths AB = 7 cm, AC = 10 cm and the centre O of the circular hole is 2.5 cm from AB and 2.5 cm from AC.

- (a) Find, correct to two decimal places, the distance of the centre of mass of the lamina from
 - (i) AB,
 - (ii) AC. [10]
- (b) The lamina is freely suspended from A and hangs in equilibrium. Calculate the angle AC makes with the vertical. [2]