

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

973/01

MATHEMATICS C1

Pure Mathematics

P.M. WEDNESDAY, 10 January 2007

 $(1\frac{1}{2} \text{ hours})$

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Calculators are **not** allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1.	The points.	A, B, C	C, D have	coordinates	(-5,	0),	(0, 5)), (3.	(4)	-3).	, respectivel	v.

- (a) Show that AC is perpendicular to BD. [4]
- (b) Show that AD is parallel to BC. [3]
- (c) Show that the equation of AC is

$$x - 2y + 5 = 0$$

and find the equation of BD.

[3]

[2]

- (d) The lines AC and BD intersect at E.
 - (i) Show that the coordinates of E are (1, 3).
 - (ii) Find the length of AE. [2]
- 2. Simplify each of the following expressions, expressing your answers in surd form.

(a)
$$2\sqrt{32} + 3\sqrt{8} - \sqrt{18}$$
 [3]

(b)
$$\frac{6+\sqrt{30}}{6-\sqrt{30}}$$
 [4]

3. When $9x^3 + 6x^2 - 5x + p$ is divided by x - 1, the remainder is 8.

(a) Show that
$$p = -2$$
. [2]

(b) Factorise
$$9x^3 + 6x^2 - 5x - 2$$
. [5]

- **4.** (a) Expand $(a + b)^4$, simplifying your coefficients as much as possible. [2]
 - (b) Solve $(2+x)^4 = 14 + 33x + 25x^2 + 8x^3 + x^4$. [4]

5. (a) Given that
$$y = 2x^2 - 5x + 3$$
, find $\frac{dy}{dx}$ from first principles. [5]

(b) Find the equation of the normal to the curve $y = 2x^2 - 5x + 3$ at the point (2, 1). [3]

6. Differentiate **each** of the following with respect to *x*.

(a)
$$2x^5 + \frac{24}{x^2} - 3\sqrt{x}$$
 [3]

(b)
$$x^2(3x+1)$$
 [2]

7. Given that the equation

$$kx^2 - 4x + (k-3) = 0$$

has real roots, show that

$$k^2 - 3k - 4 \le 0$$
.

Find the range of values of *k* satisfying this inequality.

8. (a) Express $x^2 + 4x + 9$ in the form $(x + a)^2 + b$, where the values of a and b are to be determined.

Deduce the maximum value of

$$\frac{1}{x^2 + 4x + 9} \ . \tag{4}$$

[7]

- (b) Show that the line y = x + 2 touches the curve $y = x^2 5x + 11$, and find the coordinates of the point of contact. [4]
- **9.** The curve *C* has equation

$$y = 4x^3 - 12x + 3.$$

- (a) Find the coordinates of the stationary points of C and determine the nature of each of these points. [7]
- (b) Sketch C, indicating the coordinates of the stationary points. [3]
- (c) Given that $f(x) = 4x^3 12x + 3$, sketch the curve y = f(x 1), indicating the coordinates of **each** of the stationary points. [3]