

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch Gyfrannol/Uwch

983/01

MATHEMATICS S1

Statistics

P.M. THURSDAY, 18 January 2007

 $(1\frac{1}{2} \text{ hours})$

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator:
- statistical tables (Murdoch and Barnes or RND/WJEC Publications)

INSTRUCTIONS TO CANDIDATES

Answer all questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

he chooses 3 yellow balls,

(a)

A bag contains 9 balls of which 2 are red, 3 are blue and 4 are yellow. Bill chooses 3 of these balls at random without replacement. Find the probability that

[2]

	<i>(b)</i>	he chooses no blue balls,	[2]					
	(c)	he chooses 1 ball of each colour.	[3]					
2.	The e	vents A and B are such that						
		$P(A) = 0.48, P(B) = 0.38, P(A \cap B) = 0.28.$						
	Calculate							
	(a)	$P(A \cup B)$,	[2]					
	(b)	$P(A' \cap B')$,	[2]					
	(c)	$P(B \mid A')$.	[4]					
3.		The random variable X has the distribution $B(n, 0.1)$. Given that the mean and standard deviation of X are equal, find the value of n .						
4.	Mair chooses a number at random from the set {2, 3, 4}. Whichever number Mair chooses that number of fair coins.							
	(a)	Find the probability that all the coins tossed land 'heads'.	[4]					
	(b)	Given that all the coins land 'heads', find the probability that she chose the number 2.	[3]					
5.	(a)	It is known that 35% of a certain type of seed produce red flowers. A gardener buys 20 of these seeds. Find the probability that						
		(i) exactly 5 seeds produce red flowers,						
		(ii) fewer than 8 seeds produce red flowers.	[5]					
	(b)	It is also known that 3% of these seeds produce yellow flowers. The manager of a Centre buys 500 of these seeds. Use a distributional approximation to find the prob that	Sarden ability					
		(i) exactly 10 seeds produce yellow flowers,						
		(ii) more than 12 seeds produce yellow flowers.	[5]					

6. The probability distribution of the discrete random variable *X* is given in the following table.

х	1	2	3	4	5
P(X=x)	0.3	p	0.1	q	0.05

(a) Show that
$$p + q = 0.55$$
. [1]

(b) Given that
$$E(X) = 2.75$$
, show that $p = 0.15$ and $q = 0.4$. [4]

- (d) The random variable Y is defined by Y = 4X + 2.
 - (i) Find the mean and variance of Y.

(ii) Find
$$P(Y < 15)$$
. [6]

7. The continuous random variable X has probability density function f given by

$$f(x) = 20 (x^3 - x^4),$$
 for $0 \le x \le 1$,
 $f(x) = 0$, otherwise,

(a) Find
$$E(X)$$
. [4]

- (b) (i) Obtain an expression for F(x), valid for $0 \le x \le 1$, where F denotes the cumulative distribution function of X.
 - (ii) Evaluate $P(0.4 \le X \le 0.6)$.
 - (iii) The upper quartile of X is denoted by q. Show that

$$16q^5 - 20q^4 + 3 = 0. ag{8}$$

- 8. Students on a typing course are each given a page to type. You may assume that the number of errors made on a page follows a Poisson distribution with mean μ where the value of μ varies from student to student.
 - (a) For Alan, $\mu = 3.75$. Without the use of tables, find the probability that he makes exactly 3 errors.
 - (b) A page is unsatisfactory if it contains at least 5 errors.
 - (i) For Belle, μ = 2·4. Find the probability that her page is unsatisfactory.
 - (ii) The probability that Ceri's page is unsatisfactory is 0.2194. Using tables, find the value of μ for Ceri. [4]
 - (c) Diane is the best pupil in the class and for her, $\mu = 0.6$. She is given n pages to type. Assuming that each page is independent of all others,
 - (i) show that the probability that there are no errors on any of these pages is $e^{-0.6n}$,
 - (ii) find the minimum value of n for which this probability is less than 0.01. [6]