Solutions and Mark Scheme

Final Version

1. (a)
$$P(2Y) = \frac{3}{10} \times \frac{2}{9} \text{ or } \frac{\binom{3}{2}}{\binom{10}{2}} = \frac{1}{15}$$
 M1A1

(b)
$$P(2B) = \frac{2}{10} \times \frac{1}{9} \text{ or } \frac{\binom{2}{2}}{\binom{10}{2}} = (\frac{1}{45})$$

$$P(2G) = \frac{4}{10} \times \frac{3}{9} \text{ or } \frac{\binom{4}{2}}{\binom{10}{2}} = (\frac{2}{15})$$
A1

$$P(2G) = \frac{4}{10} \times \frac{3}{9} \text{ or } \frac{\binom{4}{2}}{\binom{10}{2}} = (\frac{2}{15})$$
 A1

P(Same colour) = Sum of above probabilities M1
$$= \frac{2}{9}$$
A1

(c)
$$P(0G) = \frac{6}{10} \times \frac{5}{9} \text{ or } \frac{\binom{6}{2}}{\binom{10}{2}} = \frac{1}{3}$$
 M1A1

[FT one arithmetic slip]

2. (a)
$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$
 M1
 $= 0.2 + 0.4 - 0.52$ A1
 $= 0.08$ A1
 $P(A)P(B) = 0.08$ A1
Independent because $P(A \cap B) = P(A)P(B)$ A1

(b)
$$P(\text{Exactly one event}) = P(A \cup B) - P(A \cap B) \text{ or } P(A')P(B) + P(A)P(B')$$
 M1
= 0.44

(c) Reqd prob =
$$\frac{0.2 \times 0.6}{0.44}$$
 B1B1
= 3/11 (0.273) B1
[FT their answer to (b)]

3. (a) Mean =
$$np = 10$$
, Variance = $npq = 9$ B1B1
Dividing, M1
 $q = 0.9$ so $p = 0.1$ A1
 $n = 10/0.1 = 100$ A1

[Sp case : Award B1B0M1A1A0 for taking variance equal to 3 and getting p = 0.7]

(b)
$$Y$$
 is B(380,0.016) which is approx P(6.08) si B1 $P(Y < 3) = e^{-6.08}(1 + 6.08 + 6.08^2 / 2)$ M1A1 $= 0.058$ A1 [Award just M1 for P($Y \le 3$); award M0 for using tables]

4. (a)
$$[0,0.4]$$
 [Accept $(0,0.4)$] B1B1

(b) (i)
$$E(X) = 0.1 \times 2 + 0.2 \times 3 + 0.3 \times 4 + 5\lambda + 6(0.4 - \lambda)$$
 M1
= 4.4 - λ A1
Putting this equal to 4.25 gives $\lambda = 0.15$ A1
[FT from their expression for $E(X)$ if sensible value]

(ii)
$$E(X^2) = 0.1 \times 4 + 0.2 \times 9 + 0.3 \times 16 + 0.15 \times 25 + 0.25 \times 36$$
 (19.75) M1A1
 $Var(X) = 19.75 - 4.25^2 = 1.6875$ A1
[FT their value of λ if sensible answer]

5. (a) Number of seeds germinating, X, is B(20,0.8) si B1

(i)
$$\operatorname{Prob} = \binom{20}{15} \times 0.8^{15} \times 0.2^{5} = 0.1746$$
 M1A1

- (ii) Number of seeds failing to germinate, Y, is B(20,0.2) si B1 We require $P(X \ge 15) = P(Y \le 5) = 0.8042$ or 1 - 0.1958 M1A1
- (b) Prob that they all germinate = 0.8^n B1 Solving $0.8^n = 0.10737$ by any valid method M1 n = 10 A1 [Award 3 marks for n = 10 using tables]

6. (a) P(No heads) =
$$\frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{8}$$
 M1A1A1A1
= $\frac{7}{24}$

(b)
$$P(2 \mid \text{no heads}) = \frac{1/12}{7/24}$$
 B1B1

[FT their denominator from (a)]
$$= \frac{2}{7} \quad \text{cao}$$
 B1

- 7. (a) (i) Prob = 0.1205 or 1 0.8795 M1A1 [Award M1A0 for use of adjacent row or column]
 - (ii) $Prob = e^{-1.2} = 0.301$ M1A1 [For candidates using tables award M0 for wrong row,M1A0 if adjacent column used]

(b) Required prob =
$$\frac{0.1205}{1-0.301}$$
 B1B1
= 0.172 cao B1
[FT numerator and denominator from (a)]

(c) Reqd prob = $0.301 \times 0.301 \times (1 - 0.301) = 0.063$ M1A1 [FT from (a)(ii); Award M1A0 for $0.301 \times 0.301 \times 1.2e^{-1.2}(0.361)$]

8. (a) (i)
$$Prob = F(2.5) - F(2)$$
 M1

$$= \frac{1}{10} (2.5^2 + 2.5 - 2 - 2^2 - 2 + 2)$$
 A1

$$= 0.275$$
 A1

(ii)
$$F(m) = 0.5$$
 leading to M1

$$m^2 + m - 7 = 0$$
 A1

$$m = \frac{-1 \pm \sqrt{29}}{2}$$
 m1

$$= 2.19$$
 A1

(b) (i)
$$f(x) = F'(x)$$
 M1

$$=\frac{1}{10}(2x+1)$$
 A1

(ii)
$$f(4) = 0$$
 B1

(iii)
$$E(X) = \frac{1}{10} \int_{1}^{3} x(2x+1) dx$$
 M1

$$= \frac{1}{10} \int_{1}^{3} (2x^2 + x) dx$$
 A1

$$= \frac{1}{10} \left[\frac{2x^3}{3} + \frac{x^2}{2} \right]_1^3$$
 A1

[Limits need not be seen until line 3; FT their f(x) as far as possible]

$$= 2.13$$
 cao A1