Mathematics S1 January 2012

Q	Solution	Mark	Notes
1 (a)	$P(3 \text{ boys}) = \frac{6}{14} \times \frac{5}{13} \times \frac{4}{12} \text{ or } \binom{6}{3} \div \binom{14}{3}$	M1	
	$=\frac{5}{91} (0.055)$	A1	
(b)	P(2 boys) = $\frac{6}{14} \times \frac{5}{13} \times \frac{8}{12} \times 3$ or $\binom{6}{2} \times \binom{8}{1} \div \binom{14}{3}$	M1A1	
	$=\frac{30}{91}$		This line need not be seen.
	P(More boys) = Sum of these probs	M1	
	$=\frac{35}{91} (5/13, 0.385)$	A1	FT previous work if first 2 M marks awarded.
2	$E(Y) = 2 \times 5 + 3 = 13$	M1A1	M1 Use of formula, A1 answer.
	$Var(X) = 5 \text{ si}$ $Var(Y) = 4 \times 5 = 20$	B1 M1A1	M1 Use of formula, A1 answer.
3 (a)(i)	$P(X = 7) = {10 \choose 7} \times 0.6^7 \times 0.4^3$	M1	Accept 0.3823 – 0.1673 or 0.8327 – 0.6177
	= 0.215	A1	Working must be shown.
(ii)	Use of the fact that if X' denote the number of times Ben wins, X' is B(10,0.4). We require $P(X' \le 4)$	M1 m1	Award m1 for use of adjacent row or column.
4)	= 0.6331	A1	Working must be shown in (ii). Award M1 for summing probs
(b)	$P(1^{st} \text{ win on } 4^{th} \text{ game}) = 0.4 \times 0.4 \times 0.4 \times 0.6$ = 0.0384 (24/625)	M1A1 A1	and further 2 marks if correct. M1 multiplic of relevant probs.
4 (a)	$P(A \cap B) = P(B) \times P(A B)$	M1	
(b)	$= 0.06 P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.54$	A1 M1 A1	FT from (a)
(c)	$P(B A) = \frac{P(A \cap B)}{P(A)}$	M1	. '
	= 0.15	A1	FT from (a) except if independence assumed.
5 (a)	P(red) = $\frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3} + \frac{1}{3} \times 1$	M1A1	M1 Use of Law of Total Prob (Accept tree diagram)
	$=\frac{2}{3}$	A1	Accept Prob = No.of red cards divided by number of cards =6/9
(b)	$P(A red) = \frac{1/9}{2/3}$	B1B1	FT denominator from (a) B1 num, B1 denom
	$=\frac{1}{6}$ cao	B1	

Q	Solution	Mark	Notes
6 (a)(i)	$P(X = 5) = \frac{e^{-3.6} \times 3.6^5}{5!}$ $= 0.138$	M1 A1	Working must be shown.
(ii)	$P(X < 3) = e^{-3.6} \left(1 + 3.6 + \frac{3.6^2}{2} \right)$	M1A1 A1	Working must be shown. Award M1 for two correct terms.
(b)	$= 0.303$ $P(3 \le X \le 7) = 0.9692 - 0.3027 \text{ or } 0.6973 - 0.0308$	B1B1 B1	B1 for each correct prob.
7(a)	$= 0.666 \text{ or } 0.667 \text{ (cao)}$ $E(X) = 0.1 \times 1 + 0.1 \times 2 + 0.2 \times 3 + 0.2 \times 4 + 0.4 \times 5$ $= 3.7$	M1 A1	M1 Use of $\sum xp_x$.
	$E(X^{2})=0.1\times1+0.1\times4+0.2\times9+0.2\times16+0.4\times25$ = 15.5	B1	Need not be seen
(b)	$Var(X) = 15.5 - 3.7^2 = 1.81$	M1A1	M1 Use of correct formula for variance.
	$E\left(\frac{1}{X^{2}}\right) = 0.1 \times 1 + 0.1 \times \frac{1}{4} + 0.2 \times \frac{1}{9} + 0.2 \times \frac{1}{16} + 0.4 \times \frac{1}{25}$	M1A1	M1 Use of correct formula. A1 completely correct.
	25 = 0.176	A1	
(c)(i) (ii)	Possibilities are 1,5; 2,4; 3,3 si $P(Sum = 6) = 0.1 \times 0.4 \times 2 + 0.1 \times 0.2 \times 2 + 0.2 \times 0.2$ = 0.16 Possibilities are 1,1; 2,2; 3,3; 4,4; 5,5 si	B1 M1A1 A1 B1	Award M1A0 if 2s are missing
	Prob = $0.1^2 + 0.1^2 + 0.2^2 + 0.2^2 + 0.4^2$ = 0.26	M1 A1	
8 (a)	We are given that $16p(1-p) = 2.56$ $p^2 - p + 0.16 = 0$ Solving by a valid method $p = 0.2 \text{ cao}$ Accept finding correct solution by inspection.	M1 A1 M1 A1	Award A0 if 0.2 and 0.8 given.
(b)	$E(X^{2}) = Var(X) + [E(X)]^{2}$ $= 2.56 + 3.2^{2}$ $= 12.8$	M1 A1 A1	FT on p for $E(X)$ but not $Var(X)$.

Q	Solution	Mark	Notes
9 (a)(i)	Using the fact that $F(3) = 1$,	M1	
	6k = 1 so $k = 1/6$	A1	
(ii)	P(X > 2) = 1 - F(2)	M1	
	= 2/3	A1	
(iii)	The median satisfies		
	$\frac{1}{6}(m^2 - m) = \frac{1}{2}$ $m^2 - m - 3 = 0$	M1 A1	
	$m = \frac{1 \pm \sqrt{1 + 12}}{2} = 2.30$	m1A1	M1 valid attempt to solve.
(b)(i)	$f(x) = F'(x)$ $= \frac{2x - 1}{6}$	M1 A1	
(ii)	$E(X) = \frac{1}{6} \int_{1}^{3} x(2x-1) dx$	M1A1	M1 for the integral of $xf(x)$, A1 for completely correct although limits may be left until 2^{nd} line. FT from (b)(i) if M1 awarded
	$= \frac{1}{6} \left[\frac{2x^3}{3} - \frac{x^2}{2} \right]_1^3$	A1	there
	= 2.22	A1	