Mathematics S1 January 2014

Solutions and Mark Scheme

Final Version

Ques	Solution	Mark	Notes
1(a)(i)	$P(A \cap B) = P(B)P(A \mid B)$	M1	Award M1 for using formula
	= 0.08	A1	
(ii)	$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$	3.54	
	$P(B \mid A) = \frac{P(A)}{P(A)}$	M1	Award M1 for using formula
(b)	= 0.16	A1	FT their $P(A \cap B)$ unless
(b)	Considering any valid expression, eg $P(A \cap B) > 0$,		independence assumed
	$P(A B) > 0, P(B A) > 0, P(A \cup B) < P(A) + P(B),$	B1	FT previous work
	the events are not mutually exclusive		Conclusion must be justified
			Conclusion must be justified
2(a)			
	P(1 of each) =		
	$6 \ 4 \ 2 \ (6) \ (4) \ (2) \ (12)$	M1A1	M1AO:66 amittad an incompat
	$\frac{6}{12} \times \frac{4}{11} \times \frac{2}{10} \times 6$ or $\binom{6}{1} \times \binom{4}{1} \times \binom{2}{1} \div \binom{12}{3}$	1,1111	M1A0 if 6 omitted or incorrect factor used
	12	4.1	factor used
	$=\frac{12}{55} \qquad (0.218)$	A1	
(b)	6 5 4 (6) (12)		
(0)	$P(3 \text{ Els}) = \frac{6}{12} \times \frac{5}{11} \times \frac{4}{10} \text{ or } \begin{pmatrix} 6 \\ 3 \end{pmatrix} \div \begin{pmatrix} 12 \\ 3 \end{pmatrix}$	M1	
	1		
	$=\frac{1}{11}$ (0.091)	A1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
(c)	$P(3 \text{ Gala}) = \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \text{ or } \begin{pmatrix} 4 \\ 3 \end{pmatrix} \div \begin{pmatrix} 12 \\ 3 \end{pmatrix}$		
		B1	
	$=\frac{1}{55}$ (0.018) si	DI	
	P(3 the same) = $\frac{1}{11} + \frac{1}{55} = \frac{6}{55}$ (0.109)	M1A1	FT previous values
	11 55 55		r
3(a)	$P(C \text{ wins } 1^{st} \text{ shot}) = P(R \text{ misses})P(C \text{ hits})$	M1	
	$= 0.7 \times 0.4$	A1	
<i>a</i> :	=0.28		
(b)	$P(C \text{ wins } 2^{nd} \text{ shot}) = 0.7 \times 0.6 \times 0.7 \times 0.4$	M1	
(a)	$= 0.42 \times 0.28 (k = 0.42)$	A1 M1	
(c)	$P(C \text{ wins}) = 0.28 + 0.42 \times 0.28 + \dots$	M1	FT their value of k if between 0
	$=\frac{0.28}{1.0042}$	A1	and 1
	1 - 0.42		
	= 0.483 (14/29)	A1	

Ques	Solution	Mark	Notes
4(a)(i)	$P(X=6) = {20 \choose 6} \times 0.2^6 \times 0.8^{14} = 0.109$	M1A1	M0 if no working shown
(ii)	Prob=0.9900 - 0.0692 or 0.9308 - 0.0100 = 0.921 cao	B1B1 B1	B0B0B0 if no working shown
(b)	B(200,0.0123) is approx Po(2.46)	B1	
	$P(Y=3) = \frac{e^{-2.46} \times 2.46^3}{3!} = 0.212$	M1A1	M0 if no working shown Do not accept use of tables
5(a)	$P(2G) = \frac{1}{3} \times 1 + \frac{1}{3} \times \frac{3}{4} \times \frac{2}{3} + \frac{1}{3} \times \frac{2}{4} \times \frac{1}{3}$	M1A3	M1 Use of Law of Total Prob (Accept tree diagram)
	$=\frac{5}{9}$ cao	A1	
(b)	$P(A 2G) = \frac{1/3}{5/9}$	B1B1	FT denominator from (a)
	$=\frac{3}{5}$ cao	B1	B1 num, B1 denom
6(a)(i)	X is B(10,0.75) si	B1	
	E(X) = 7.5, Var(X) = 1.875	B1 B1	
(ii)	Attempt to evaluate either $P(X = 7)$ or $P(X = 8)$ P(X = 7) = 0.250; $P(X = 8) = 0.282So try P(X = 9) = 0.188$	M1 A1 A1	
(I-)(2)	Most likely value = 8	A1	Award the final A1 only if the previous A1 was awarded
(b)(i) (ii)	W = 10X - 2(10 - X) = 12X - 20 E(W) = 12 × 7.5 - 20 = 70 Var(W) = 12 ² × Var(X) = 270	B1 B1 M1A1	FT their mean and variance from (a) and FT their derived values of a and b provided that $a \ne 1$ and $b \ne 0$
7(a)	$E(X) = 0.1 \times 1 + 0.2 \times 2 + 0.3 \times 3 + 0.1 \times 4 + 0.3 \times 5$	M1	and $U \neq 0$
	$= 3.3$ $E(X^{2}) = 0.1 \times 1 + 0.2 \times 4 + 0.3 \times 9 + 0.1 \times 16$ $+ 0.3 \times 25 (12.7)$	A1 B1	·
	$Var(X) = 12.7 - 3.3^2 = 1.81$	M1A1	FT their $E(X^2)$
(b)(i)	The possibilities are $(1,1,2)$; $(1,2,1)$; $(2,1,1)$ $P(S=4)=0.1^2 \times 0.2 \times 3 = 0.006$	B1 M1A1	Award M1 if only one correct possibility given
(ii)	The only extra possibility is $(1,1,1)$ so $P(S=3) = 0.1^3$ (0.001)	B1 B1	r
	Therefore $P(S \le 4) = 0.007$	B1	FT from (b)(i) if M1 awarded

Ques	Solution	Mark	Notes
8(a)(i) (ii)	Prob = $\frac{e^{-15} \times 15^{12}}{12!}$ or $0.2676 - 0.1848$ = 0.083 or $0.8152 - 0.7324$ We require $P(X \ge 20)$ = $1 - 0.8752 = 0.1248$	M1 A1 M1 A1	M0 if no working shown Award M1A0 for use of adjacent row or column
(b)	(Using tables, the number required is) 25	M1A1	Award M1A0 for 24 or 26
9(a)(i)	Using $F(2) = 1$	M1	
	1 = k(8-2) $k = 1/6 (convincing)$	A1	
(ii)	$P(1.25 \le X \le 1.75) = F(1.75) - F(1.25)$ = 0.6015 0.1171 si = 0.484 (31/64)	M1 A1 A1	
(b)(i)	$f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^3 - x}{6} \right)$	M1	
	$=\frac{3x^2-1}{6}$	A1	
(ii)	$E(X) = \int_{1}^{2} x \left(\frac{3x^2 - 1}{6}\right) dx$	M1A1	M1 for the integral of $xf(x)$, A1 for completely correct with or without limits FT on their f if previous M1
	$= \left[\frac{x^4}{8} - \frac{x^2}{12}\right]_1^2$	A1	awarded Limits must appear here if not before
	= 1.625 cao	A1	M0 if no working shown